These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21984613)

  • 21. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.
    Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J
    J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exciting new developments at the 5th International Symposium on Surface and Interface of Biomaterials.
    Grøndahl L; Kingshott P; Griesser HJ
    Biointerphases; 2015 Dec; 10(4):04A101. PubMed ID: 26679721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the intimate relationship between biomechanics and optimal clinical performance: application of implant design.
    Norton MR
    Compend Contin Educ Dent; 2002 Sep; 23(9 Suppl 2):21-5. PubMed ID: 12790010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The biocompatibility of SLA-treated titanium implants.
    Kim H; Choi SH; Ryu JJ; Koh SY; Park JH; Lee IS
    Biomed Mater; 2008 Jun; 3(2):025011. PubMed ID: 18458368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review paper: surface modification for bioimplants: the role of laser surface engineering.
    Kurella A; Dahotre NB
    J Biomater Appl; 2005 Jul; 20(1):5-50. PubMed ID: 15972362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modern biomaterials: a review - bulk properties and implications of surface modifications.
    Roach P; Eglin D; Rohde K; Perry CC
    J Mater Sci Mater Med; 2007 Jul; 18(7):1263-77. PubMed ID: 17443395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological responses to immobilized microscale and nanoscale surface topographies.
    Skoog SA; Kumar G; Narayan RJ; Goering PL
    Pharmacol Ther; 2018 Feb; 182():33-55. PubMed ID: 28720431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cells, growth factors and bioactive surface properties in a mechanobiological model of implant healing.
    Guérin G; Ambard D; Swider P
    J Biomech; 2009 Nov; 42(15):2555-61. PubMed ID: 19665713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography.
    Hacking SA; Zuraw M; Harvey EJ; Tanzer M; Krygier JJ; Bobyn JD
    J Biomed Mater Res A; 2007 Jul; 82(1):179-87. PubMed ID: 17269149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional biointerface materials inspired from nature.
    Sun T; Qing G; Su B; Jiang L
    Chem Soc Rev; 2011 May; 40(5):2909-21. PubMed ID: 21347500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanosurfaces and nanostructures for artificial orthopedic implants.
    Streicher RM; Schmidt M; Fiorito S
    Nanomedicine (Lond); 2007 Dec; 2(6):861-74. PubMed ID: 18095851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of biocompatibility using in vitro methods: interpretation and limitations.
    Bruinink A; Luginbuehl R
    Adv Biochem Eng Biotechnol; 2012; 126():117-52. PubMed ID: 21989487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional biomaterial coatings: synthetic challenges and biological activity.
    Pagel M; Beck-Sickinger AG
    Biol Chem; 2017 Jan; 398(1):3-22. PubMed ID: 27636830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Tissue reaction after implantation of ceramic biomaterials with introduced electrokinetic zeta potential on surface].
    Lewandowski R; Rutowski R; Staniszewska-Kuś J; Pielka S; Wnukiewicz B
    Polim Med; 2004; 34(1):13-25. PubMed ID: 15222224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing implant surface topography for improved biocompatibility.
    Harvey AG; Hill EW; Bayat A
    Expert Rev Med Devices; 2013 Mar; 10(2):257-67. PubMed ID: 23480094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface physics methods and in vitro bone-biomaterial interface control.
    Muster D; Humbert P; Mosser A
    Biomaterials; 1990 Jul; 11():57-62. PubMed ID: 2168765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Status of surface treatment in endosseous implant: a literary overview.
    Gupta A; Dhanraj M; Sivagami G
    Indian J Dent Res; 2010; 21(3):433-8. PubMed ID: 20930358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of osseointegrated implant surfaces: materials, chemistry and topography.
    Dohan Ehrenfest DM; Coelho PG; Kang BS; Sul YT; Albrektsson T
    Trends Biotechnol; 2010 Apr; 28(4):198-206. PubMed ID: 20116873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Future directions for research on materials and design of dental implants.
    Smith DC
    J Dent Educ; 1988 Dec; 52(12):815-20. PubMed ID: 3192805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.