BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 21984696)

  • 1. An importin β protein negatively regulates MicroRNA activity in Arabidopsis.
    Wang W; Ye R; Xin Y; Fang X; Li C; Shi H; Zhou X; Qi Y
    Plant Cell; 2011 Oct; 23(10):3565-76. PubMed ID: 21984696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRANSPORTIN1 Promotes the Association of MicroRNA with ARGONAUTE1 in Arabidopsis.
    Cui Y; Fang X; Qi Y
    Plant Cell; 2016 Oct; 28(10):2576-2585. PubMed ID: 27662897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic HYL1 modulates miRNA-mediated translational repression.
    Yang X; Dong W; Ren W; Zhao Q; Wu F; He Y
    Plant Cell; 2021 Jul; 33(6):1980-1996. PubMed ID: 33764452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.
    Vaucheret H; Vazquez F; Crété P; Bartel DP
    Genes Dev; 2004 May; 18(10):1187-97. PubMed ID: 15131082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HOS1 regulates Argonaute1 by promoting transcription of the microRNA gene MIR168b in Arabidopsis.
    Wang B; Duan CG; Wang X; Hou YJ; Yan J; Gao C; Kim JH; Zhang H; Zhu JK
    Plant J; 2015 Mar; 81(6):861-70. PubMed ID: 25619693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Intrinsically Disordered Protein CARP9 Bridges HYL1 to AGO1 in the Nucleus to Promote MicroRNA Activity.
    Tomassi AH; Re DA; Romani F; Cambiagno DA; Gonzalo L; Moreno JE; Arce AL; Manavella PA
    Plant Physiol; 2020 Sep; 184(1):316-329. PubMed ID: 32636339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KETCH1 imports HYL1 to nucleus for miRNA biogenesis in
    Zhang Z; Guo X; Ge C; Ma Z; Jiang M; Li T; Koiwa H; Yang SW; Zhang X
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):4011-4016. PubMed ID: 28348234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA Decay of Most Arabidopsis miRNA Targets Requires Slicer Activity of AGO1.
    Arribas-Hernández L; Kielpinski LJ; Brodersen P
    Plant Physiol; 2016 Aug; 171(4):2620-32. PubMed ID: 27208258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1.
    Vaucheret H; Mallory AC; Bartel DP
    Mol Cell; 2006 Apr; 22(1):129-36. PubMed ID: 16600876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HASTY, the Arabidopsis EXPORTIN5 ortholog, regulates cell-to-cell and vascular microRNA movement.
    Brioudes F; Jay F; Sarazin A; Grentzinger T; Devers EA; Voinnet O
    EMBO J; 2021 Aug; 40(15):e107455. PubMed ID: 34152631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt Stress Reveals a New Role for ARGONAUTE1 in miRNA Biogenesis at the Transcriptional and Posttranscriptional Levels.
    Dolata J; Bajczyk M; Bielewicz D; Niedojadlo K; Niedojadlo J; Pietrykowska H; Walczak W; Szweykowska-Kulinska Z; Jarmolowski A
    Plant Physiol; 2016 Sep; 172(1):297-312. PubMed ID: 27385819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis.
    Dalmadi Á; Miloro F; Bálint J; Várallyay É; Havelda Z
    Nucleic Acids Res; 2021 Dec; 49(22):12912-12928. PubMed ID: 34850097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleo-cytosolic Shuttling of ARGONAUTE1 Prompts a Revised Model of the Plant MicroRNA Pathway.
    Bologna NG; Iselin R; Abriata LA; Sarazin A; Pumplin N; Jay F; Grentzinger T; Dal Peraro M; Voinnet O
    Mol Cell; 2018 Feb; 69(4):709-719.e5. PubMed ID: 29398448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DRB2 is required for microRNA biogenesis in Arabidopsis thaliana.
    Eamens AL; Kim KW; Curtin SJ; Waterhouse PM
    PLoS One; 2012; 7(4):e35933. PubMed ID: 22545148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants.
    Carbonell A; Fahlgren N; Garcia-Ruiz H; Gilbert KB; Montgomery TA; Nguyen T; Cuperus JT; Carrington JC
    Plant Cell; 2012 Sep; 24(9):3613-29. PubMed ID: 23023169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Slicer Activity of ARGONAUTE1 Is Required Specifically for the Phasing, Not Production, of Trans-Acting Short Interfering RNAs in Arabidopsis.
    Arribas-Hernández L; Marchais A; Poulsen C; Haase B; Hauptmann J; Benes V; Meister G; Brodersen P
    Plant Cell; 2016 Jul; 28(7):1563-80. PubMed ID: 27354557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species.
    Zhai J; Zhao Y; Simon SA; Huang S; Petsch K; Arikit S; Pillay M; Ji L; Xie M; Cao X; Yu B; Timmermans M; Yang B; Chen X; Meyers BC
    Plant Cell; 2013 Jul; 25(7):2417-28. PubMed ID: 23839787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading.
    Liang C; Cai Q; Wang F; Li S; You C; Xu C; Gao L; Cao D; Lan T; Zhang B; Mo B; Chen X
    Nat Commun; 2022 Mar; 13(1):1217. PubMed ID: 35260568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto ARGONAUTE1 in Arabidopsis.
    Fan L; Zhang C; Gao B; Zhang Y; Stewart E; Jez J; Nakajima K; Chen X
    Dev Cell; 2022 Apr; 57(8):995-1008.e5. PubMed ID: 35429434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.