These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21984925)

  • 21. CMT: a constrained multi-level thresholding approach for ChIP-Seq data analysis.
    Rezaeian I; Rueda L
    PLoS One; 2014; 9(4):e93873. PubMed ID: 24736605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Software for rapid time dependent ChIP-sequencing analysis (TDCA).
    Myschyshyn M; Farren-Dai M; Chuang TJ; Vocadlo D
    BMC Bioinformatics; 2017 Nov; 18(1):521. PubMed ID: 29178831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica.
    Du Z; Li H; Wei Q; Zhao X; Wang C; Zhu Q; Yi X; Xu W; Liu XS; Jin W; Su Z
    Mol Plant; 2013 Sep; 6(5):1463-72. PubMed ID: 23355544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition.
    Egan B; Yuan CC; Craske ML; Labhart P; Guler GD; Arnott D; Maile TM; Busby J; Henry C; Kelly TK; Tindell CA; Jhunjhunwala S; Zhao F; Hatton C; Bryant BM; Classon M; Trojer P
    PLoS One; 2016; 11(11):e0166438. PubMed ID: 27875550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk.
    Brinkman AB; Gu H; Bartels SJ; Zhang Y; Matarese F; Simmer F; Marks H; Bock C; Gnirke A; Meissner A; Stunnenberg HG
    Genome Res; 2012 Jun; 22(6):1128-38. PubMed ID: 22466170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape-based peak identification for ChIP-Seq.
    Hower V; Evans SN; Pachter L
    BMC Bioinformatics; 2011 Jan; 12():15. PubMed ID: 21226895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining multiple ChIP-seq peak detection systems using combinatorial fusion.
    Schweikert C; Brown S; Tang Z; Smith PR; Hsu DF
    BMC Genomics; 2012; 13 Suppl 8(Suppl 8):S12. PubMed ID: 23282014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QChIPat: a quantitative method to identify distinct binding patterns for two biological ChIP-seq samples in different experimental conditions.
    Liu B; Yi J; Sv A; Lan X; Ma Y; Huang TH; Leone G; Jin VX
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S3. PubMed ID: 24564479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Triform algorithm: improved sensitivity and specificity in ChIP-Seq peak finding.
    Kornacker K; Rye MB; Håndstad T; Drabløs F
    BMC Bioinformatics; 2012 Jul; 13():176. PubMed ID: 22827163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OccuPeak: ChIP-Seq peak calling based on internal background modelling.
    de Boer BA; van Duijvenboden K; van den Boogaard M; Christoffels VM; Barnett P; Ruijter JM
    PLoS One; 2014; 9(6):e99844. PubMed ID: 24936875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ChIPseqR: analysis of ChIP-seq experiments.
    Humburg P; Helliwell CA; Bulger D; Stone G
    BMC Bioinformatics; 2011 Jan; 12():39. PubMed ID: 21281468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Normalization, bias correction, and peak calling for ChIP-seq.
    Diaz A; Park K; Lim DA; Song JS
    Stat Appl Genet Mol Biol; 2012 Mar; 11(3):Article 9. PubMed ID: 22499706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global Analysis Reveals the Crucial Roles of DNA Methylation during Rice Seed Development.
    Xing MQ; Zhang YJ; Zhou SR; Hu WY; Wu XT; Ye YJ; Wu XX; Xiao YP; Li X; Xue HW
    Plant Physiol; 2015 Aug; 168(4):1417-32. PubMed ID: 26145151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data.
    Xing H; Mo Y; Liao W; Zhang MQ
    PLoS Comput Biol; 2012; 8(7):e1002613. PubMed ID: 22844240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells.
    Shin JH; Li RW; Gao Y; Baldwin R; Li CJ
    Funct Integr Genomics; 2012 Mar; 12(1):119-30. PubMed ID: 22249597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HERON: A Novel Tool Enables Identification of Long, Weakly Enriched Genomic Domains in ChIP-seq Data.
    Macioszek A; Wilczynski B
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis.
    Suryatenggara J; Yong KJ; Tenen DE; Tenen DG; Bassal MA
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Picking ChIP-seq peak detectors for analyzing chromatin modification experiments.
    Micsinai M; Parisi F; Strino F; Asp P; Dynlacht BD; Kluger Y
    Nucleic Acids Res; 2012 May; 40(9):e70. PubMed ID: 22307239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.