These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21985465)

  • 1. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles.
    Huang Y; Kim DH
    Langmuir; 2011 Nov; 27(22):13861-7. PubMed ID: 21985465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.
    Ferhan AR; Guo L; Kim DH
    Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm.
    Perrault SD; Chan WC
    J Am Chem Soc; 2009 Dec; 131(47):17042-3. PubMed ID: 19891442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free optical characterization methods for detecting amine silanization-driven gold nanoparticle self-assembly.
    Roy S; Dixit CK; Woolley R; O'Kennedy R; McDonagh C
    Langmuir; 2011 Sep; 27(17):10421-8. PubMed ID: 21780775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays.
    Lalander CH; Zheng Y; Dhuey S; Cabrini S; Bach U
    ACS Nano; 2010 Oct; 4(10):6153-61. PubMed ID: 20932055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seed-mediated synthesis of gold tetrahedra in high purity and with tunable, well-controlled sizes.
    Zheng Y; Liu W; Lv T; Luo M; Hu H; Lu P; Choi SI; Zhang C; Tao J; Zhu Y; Li ZY; Xia Y
    Chem Asian J; 2014 Sep; 9(9):2635-40. PubMed ID: 24976486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length.
    Miranda A; Malheiro E; Skiba E; Quaresma P; Carvalho PA; Eaton P; de Castro B; Shelnutt JA; Pereira E
    Nanoscale; 2010 Oct; 2(10):2209-16. PubMed ID: 20714654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors.
    Guo L; Zhou X; Kim DH
    Biosens Bioelectron; 2011 Jan; 26(5):2246-51. PubMed ID: 21035320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization.
    Huang S; Ma H; Zhang X; Yong F; Feng X; Pan W; Wang X; Wang Y; Chen S
    J Phys Chem B; 2005 Oct; 109(42):19823-30. PubMed ID: 16853563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically bound gold nanoparticle arrays on silicon: assembly, properties and SERS study of protein interactions.
    Kaminska A; Inya-Agha O; Forster RJ; Keyes TE
    Phys Chem Chem Phys; 2008 Jul; 10(28):4172-80. PubMed ID: 18612522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing.
    Beeram SR; Zamborini FP
    ACS Nano; 2010 Jul; 4(7):3633-46. PubMed ID: 20575510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism.
    Xie Y; Guo S; Guo C; He M; Chen D; Ji Y; Chen Z; Wu X; Liu Q; Xie S
    Langmuir; 2013 May; 29(21):6232-41. PubMed ID: 23672308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-mediated self-assembly of Au nanoparticles and their related conversion to complex mesoporous structures.
    Zhang YX; Zeng HC
    Langmuir; 2008 Apr; 24(8):3740-6. PubMed ID: 18315014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles.
    Han Y; Jiang J; Lee SS; Ying JY
    Langmuir; 2008 Jun; 24(11):5842-8. PubMed ID: 18465888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle self-similar chain structure organized by DNA origami.
    Ding B; Deng Z; Yan H; Cabrini S; Zuckermann RN; Bokor J
    J Am Chem Soc; 2010 Mar; 132(10):3248-9. PubMed ID: 20163139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of zeatin with gold ions and biomimetic formation of gold complexes and nanoparticles.
    Fowles CC; Smoak EM; Banerjee IA
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):250-8. PubMed ID: 20392614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.