BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21985501)

  • 21. [Oxidation by nitrite of azurin and cytochrome c-551 from Pseudomonas aeruginosa].
    Kamalian MG; Karapetian AV; Nalbandian RM
    Biokhimiia; 1987 Apr; 52(4):638-42. PubMed ID: 3036256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the axial ligand in type 1 Cu centers studied by point mutations of met148 in rusticyanin.
    Hall JF; Kanbi LD; Strange RW; Hasnain SS
    Biochemistry; 1999 Sep; 38(39):12675-80. PubMed ID: 10504237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins.
    Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M
    Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active site geometry in the high oxido-reduction potential rusticyanin from Thiobacillus ferrooxidans.
    Nunzi F; Guerlesquin F; Shepard W; Guigliarelli B; Bruschi M
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1655-62. PubMed ID: 7945314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the mechanism of short-range electron transfer using an immobilized cupredoxin.
    Monari S; Battistuzzi G; Bortolotti CA; Yanagisawa S; Sato K; Li C; Salard I; Kostrz D; Borsari M; Ranieri A; Dennison C; Sola M
    J Am Chem Soc; 2012 Jul; 134(29):11848-51. PubMed ID: 22788731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redesigning the blue copper azurin into a redox-active mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E azurin.
    Liu J; Meier KK; Tian S; Zhang JL; Guo H; Schulz CE; Robinson H; Nilges MJ; Münck E; Lu Y
    J Am Chem Soc; 2014 Sep; 136(35):12337-44. PubMed ID: 25082811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environment of copper in Pseudomonas aeruginosa azurin probed by binding of exogenous ligands to Met121X (X = Gly, Ala, Val, Leu, or Asp) mutants.
    Bonander N; Karlsson BG; Vänngård T
    Biochemistry; 1996 Feb; 35(7):2429-36. PubMed ID: 8652586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of copper ligand mutations on a cupredoxin with a green copper center.
    Roger M; Sciara G; Biaso F; Lojou E; Wang X; Bauzan M; Giudici-Orticoni MT; Vila AJ; Ilbert M
    Biochim Biophys Acta Bioenerg; 2017 May; 1858(5):351-359. PubMed ID: 28214520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
    Zhuravleva AV; Korzhnev DM; Kupce E; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2004 Oct; 342(5):1599-611. PubMed ID: 15364584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray structure determination and characterization of the Pseudomonas aeruginosa azurin mutant Met121Glu.
    Karlsson BG; Tsai LC; Nar H; Sanders-Loehr J; Bonander N; Langer V; Sjölin L
    Biochemistry; 1997 Apr; 36(14):4089-95. PubMed ID: 9100002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand replacement study at the His120 site of purple CuA azurin.
    Berry SM; Wang X; Lu Y
    J Inorg Biochem; 2000 Jan; 78(1):89-95. PubMed ID: 10714710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation.
    Clark KM; Yu Y; Marshall NM; Sieracki NA; Nilges MJ; Blackburn NJ; van der Donk WA; Lu Y
    J Am Chem Soc; 2010 Jul; 132(29):10093-101. PubMed ID: 20608676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW; Lam A; Mirica LM; Klinman JP
    Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.
    Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE
    Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the electron-transfer sites of Pseudomonas aeruginosa azurin by site-directed mutagenesis.
    Pascher T; Bergström J; Malmström BG; Vänngård T; Lundberg LG
    FEBS Lett; 1989 Dec; 258(2):266-8. PubMed ID: 2557238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin.
    Sakurai T
    FEBS Lett; 2006 Mar; 580(7):1729-32. PubMed ID: 16500649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paramagnetic NMR studies of blue and purple copper proteins.
    Kolczak U; Salgado J; Siegal G; Saraste M; Canters GW
    Biospectroscopy; 1999; 5(5 Suppl):S19-32. PubMed ID: 10512535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox properties of an engineered purple Cu(A) azurin.
    Sun D; Wang X; Davidson VL
    Arch Biochem Biophys; 2002 Aug; 404(1):158-62. PubMed ID: 12127080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic characterization of a high-potential lipo-cupredoxin found in Streptomyces coelicolor.
    Worrall JA; Machczynski MC; Keijser BJ; di Rocco G; Ceola S; Ubbink M; Vijgenboom E; Canters GW
    J Am Chem Soc; 2006 Nov; 128(45):14579-89. PubMed ID: 17090042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal binding to Pseudomonas aeruginosa azurin: a kinetic investigation.
    Naro F; Tordi MG; Giacometti GM; Tomei F; Timperio AM; Zolla L
    Z Naturforsch C J Biosci; 2000; 55(5-6):347-54. PubMed ID: 10928545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.