BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21985663)

  • 1. Interactions between ionizable amino acid side chains at a lipid bilayer-water interface.
    Yuzlenko O; Lazaridis T
    J Phys Chem B; 2011 Nov; 115(46):13674-84. PubMed ID: 21985663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentials of mean force between ionizable amino acid side chains in water.
    Masunov A; Lazaridis T
    J Am Chem Soc; 2003 Feb; 125(7):1722-30. PubMed ID: 12580597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: insights from molecular dynamics simulations using charge equilibration potentials.
    Ou S; Lucas TR; Zhong Y; Bauer BA; Hu Y; Patel S
    J Phys Chem B; 2013 Apr; 117(13):3578-92. PubMed ID: 23409975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of amino acids in a lipid bilayer from computer simulations.
    MacCallum JL; Bennett WF; Tieleman DP
    Biophys J; 2008 May; 94(9):3393-404. PubMed ID: 18212019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. IV. Pairs of different hydrophobic side chains.
    Makowski M; Sobolewski E; Czaplewski C; Ołdziej S; Liwo A; Scheraga HA
    J Phys Chem B; 2008 Sep; 112(36):11385-95. PubMed ID: 18700740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain Models in Water.
    Wiśniewska M; Sobolewski E; Ołdziej S; Liwo A; Scheraga HA; Makowski M
    J Phys Chem B; 2015 Jul; 119(27):8526-34. PubMed ID: 26100791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An atomic and molecular view of the depth dependence of the free energies of solute transfer from water into lipid bilayers.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    Mol Pharm; 2011 Dec; 8(6):2204-15. PubMed ID: 21988564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains.
    Makowski M; Liwo A; Sobolewski E; Scheraga HA
    J Phys Chem B; 2011 May; 115(19):6119-29. PubMed ID: 21500792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The different interactions of lysine and arginine side chains with lipid membranes.
    Li L; Vorobyov I; Allen TW
    J Phys Chem B; 2013 Oct; 117(40):11906-20. PubMed ID: 24007457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy and enthalpy of interaction between amino acid side chains in nanopores.
    Vaitheeswaran S; Thirumalai D
    J Chem Phys; 2014 Dec; 141(22):22D523. PubMed ID: 25494794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol.
    Karathanou K; Bondar AN
    J Membr Biol; 2018 Jun; 251(3):461-473. PubMed ID: 29523937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.
    Makowski M; Liwo A; Scheraga HA
    J Phys Chem B; 2017 Jan; 121(2):379-390. PubMed ID: 28000446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study.
    Peters GH; Werge M; Elf-Lind MN; Madsen JJ; Velardez GF; Westh P
    Chem Phys Lipids; 2014 Dec; 184():7-17. PubMed ID: 25159594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. VI. Oppositely charged side chains.
    Makowski M; Liwo A; Scheraga HA
    J Phys Chem B; 2011 May; 115(19):6130-7. PubMed ID: 21500791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.
    Fleming PJ; Freites JA; Moon CP; Tobias DJ; Fleming KG
    Biochim Biophys Acta; 2012 Feb; 1818(2):126-34. PubMed ID: 21816133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.