These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 219861)
1. Relationship between changes in the calcium dependent regulatory protein and adenylate cyclase during viral transformation. LaPorte DC; Gidwitz S; Weber MJ; Storm DR Biochem Biophys Res Commun; 1979 Feb; 86(4):1169-77. PubMed ID: 219861 [No Abstract] [Full Text] [Related]
2. Ca2+-dependent regulation of calmodulin binding and adenylate cyclase activation in bovine cerebellar membranes. Malnoë A; Cox JA; Stein EA Biochim Biophys Acta; 1982 Jan; 714(1):84-92. PubMed ID: 6120010 [TBL] [Abstract][Full Text] [Related]
3. Temporal coupling of cyclic AMP and Ca/calmodulin-stimulated adenylyl cyclase to the circadian clock in chick retinal photoreceptor cells. Chaurasia SS; Haque R; Pozdeyev N; Jackson CR; Iuvone PM J Neurochem; 2006 Nov; 99(4):1142-50. PubMed ID: 16981891 [TBL] [Abstract][Full Text] [Related]
4. A comparison between adenylate cyclase solubilized from normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Gidwitz S; Toscano WA; Toscano DG; Weber MJ; Storm DR Biochim Biophys Acta; 1980 Jan; 627(1):1-16. PubMed ID: 6243494 [TBL] [Abstract][Full Text] [Related]
5. Strain specificity of changes in adenylate cyclase activity in cells transformed by avian sarcoma viruses. Yoshida M Virology; 1975 Jan; 63(1):68-76. PubMed ID: 163052 [No Abstract] [Full Text] [Related]
6. Resolution of adenylate cyclase sensitive and insensitive to Ca2+ and calcium-dependent regulatory protein (CDR) by CDR-sepharose affinity chromatography. Westcott KR; La Porte DC; Storm DR Proc Natl Acad Sci U S A; 1979 Jan; 76(1):204-8. PubMed ID: 284333 [TBL] [Abstract][Full Text] [Related]
7. Adenylate cyclase activity and the cAMP level are not directly correlated with transformation by avian sarcoma viruses. Yoshida M; Ikawa Y; Owada M; Toyoshima K Int J Cancer; 1977 Oct; 20(4):560-3. PubMed ID: 199547 [TBL] [Abstract][Full Text] [Related]
8. Transformation of chick-embryo fibroblasts by wild-type and temperature-sensitive Rous sarcoma virus alters adenylate cyclase activity. Anderson WB; Johnson GS; Pastan I Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1055-9. PubMed ID: 4352222 [TBL] [Abstract][Full Text] [Related]
9. Dissociation of transformation parameters using temperature-conditional mutants of Rous sarcoma virus. Weber MJ; Friis RR Cell; 1979 Jan; 16(1):25-32. PubMed ID: 217543 [No Abstract] [Full Text] [Related]
10. Specific binding of the calcium-dependent regulation protein to brain membranes from the guinea pig. Vandermeers A; Robberecht P; Vandermeers-Piret MC; Rathé J; Christophe J Biochem Biophys Res Commun; 1978 Oct; 84(4):1076-81. PubMed ID: 728147 [No Abstract] [Full Text] [Related]
11. Effect of membrane phospholipid composition changes on adenylate cyclase activity in normal and rous-sarcoma-transformed chicken embryo fibroblasts. Gidwitz S; Pessin JE; Weber MJ; Glaser M; Storm DR Biochim Biophys Acta; 1980 Mar; 628(3):263-76. PubMed ID: 6245707 [TBL] [Abstract][Full Text] [Related]
12. Adenylate cyclase activity is decreased in chick embryo fibroblasts transformed by wild type and temperature sensitive Schmidt-Ruppin Rous sarcoma virus. Anderson WB; Lovelace E; Pastan I Biochem Biophys Res Commun; 1973 Jun; 52(4):1293-9. PubMed ID: 4352241 [No Abstract] [Full Text] [Related]
13. Calmodulin activation and calcium regulation of parotid gland adenylate cyclase. Piascik MT; Babich M; Jacobson KL; Watson EL Am J Physiol; 1986 Apr; 250(4 Pt 1):C642-5. PubMed ID: 3083690 [TBL] [Abstract][Full Text] [Related]
14. Involvement of calmodulin in the regulation of adenylate cyclase activity in guinea-pig enterocytes. Pinkus LM; Sulimovici S; Susser FI; Roginsky MS Biochim Biophys Acta; 1983 Jul; 762(4):552-9. PubMed ID: 6191780 [TBL] [Abstract][Full Text] [Related]
15. Decreased adenylate cyclase responsiveness of transformed cells correlates with the presence of a viral transforming protein. Beckner SK FEBS Lett; 1984 Jan; 166(1):170-4. PubMed ID: 6692919 [TBL] [Abstract][Full Text] [Related]
16. Ontogenetic changes in adenylate cyclase, cyclic AMP phosphodiesterase and calmodulin in chick ventricular myocardium. Epstein PM; Andrenyak DM; Smith CJ; Pappano AJ Biochem J; 1987 Apr; 243(2):525-31. PubMed ID: 2820384 [TBL] [Abstract][Full Text] [Related]
17. The role of calmodulin in cell transformation. Connor CG; Moore PB; Brady RC; Horn JP; Arlinghaus RB; Dedman JR Biochem Biophys Res Commun; 1983 Apr; 112(2):647-54. PubMed ID: 6303327 [TBL] [Abstract][Full Text] [Related]
18. Hexose uptake enhancing factor released from Rous sarcoma cells. Lawrence DA; Jullien P J Cell Physiol; 1980 Feb; 102(2):245-57. PubMed ID: 6246129 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of the calmodulin system in transformed cells. Van Eldik LJ; Zimmer WE; Barger SW; Watterson DM Adv Exp Med Biol; 1990; 269():111-20. PubMed ID: 2162134 [No Abstract] [Full Text] [Related]
20. Day/night differences in the stimulation of adenylate cyclase activity by calcium/calmodulin in chick pineal cell cultures: evidence for circadian regulation of cyclic AMP. Nikaido SS; Takahashi JS J Biol Rhythms; 1998 Dec; 13(6):479-93. PubMed ID: 9850009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]