These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21986817)

  • 1. A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties.
    Reeve HA; Lauterbach L; Ash PA; Lenz O; Vincent KA
    Chem Commun (Camb); 2012 Feb; 48(10):1589-91. PubMed ID: 21986817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy.
    Burgdorf T; Löscher S; Liebisch P; Van der Linden E; Galander M; Lendzian F; Meyer-Klaucke W; Albracht SP; Friedrich B; Dau H; Haumann M
    J Am Chem Soc; 2005 Jan; 127(2):576-92. PubMed ID: 15643882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha.
    Lauterbach L; Idris Z; Vincent KA; Lenz O
    PLoS One; 2011; 6(10):e25939. PubMed ID: 22016788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenase-based oxidative biocatalysis without oxygen.
    Al-Shameri A; Siebert DL; Sutiono S; Lauterbach L; Sieber V
    Nat Commun; 2023 May; 14(1):2693. PubMed ID: 37258512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic regeneration of nicotinamide cofactor biomimetics drives biocatalytic reduction by Old Yellow enzymes.
    Luo F; Gu X; Zhu Y; Zhou J; Xu G; Ni Y
    Bioorg Chem; 2024 Jun; 147():107418. PubMed ID: 38703441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of NADH and ketone hydrogenation by hydrogen with the combination of hydrogenase and alcohol dehydrogenase. Scientific note.
    Okura I; Otsuka K; Nakada N; Hasumi F
    Appl Biochem Biotechnol; 1990; 24-25():425-30. PubMed ID: 2191625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes.
    Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B
    Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha.
    Porthun A; Bernhard M; Friedrich B
    Arch Microbiol; 2002 Feb; 177(2):159-66. PubMed ID: 11807565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic catalysis on conducting graphite particles.
    Vincent KA; Li X; Blanford CF; Belsey NA; Weiner JH; Armstrong FA
    Nat Chem Biol; 2007 Dec; 3(12):761-2. PubMed ID: 17994012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of catalytically essential functional groups of NAD-dependent hydrogenase from Ralstonia eutropha H16.
    Tikhonova TV; Savel'eva ND; Popov VO
    Biochemistry (Mosc); 2003 Sep; 68(9):994-1001. PubMed ID: 14606942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus without exogenous mediators.
    Shumilin IA; Nikandrov VV; Popov VO; Krasnovsky AA
    FEBS Lett; 1992 Jul; 306(2-3):125-8. PubMed ID: 1633866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH.
    de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P; Abruña HD
    Anal Chem; 2005 Apr; 77(8):2624-31. PubMed ID: 15828802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of NAD+ by uptake hydrogenase from groundnut bacteroids.
    Lodha ML; Naik MS
    Indian J Biochem Biophys; 1984 Jun; 21(3):206-7. PubMed ID: 6394471
    [No Abstract]   [Full Text] [Related]  

  • 19. Metal as a novel type of the enzyme substrate. Metallic cadmium photogenerated in the system CdS-formate as a substrate of the NAD-dependent hydrogenase.
    Shumilin IA; Nikandrov VV; Krasnovsky AA; Popov VO
    FEBS Lett; 1993 Aug; 328(1-2):189-92. PubMed ID: 8344424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.