BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21986943)

  • 1. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-β and miR-24: role in epithelial-to-mesenchymal transition.
    Papadimitriou E; Vasilaki E; Vorvis C; Iliopoulos D; Moustakas A; Kardassis D; Stournaras C
    Oncogene; 2012 Jun; 31(23):2862-75. PubMed ID: 21986943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FMNL2 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition.
    Li Y; Zhu X; Zeng Y; Wang J; Zhang X; Ding YQ; Liang L
    Mol Cancer Res; 2010 Dec; 8(12):1579-90. PubMed ID: 21071512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells.
    Lee J; Moon HJ; Lee JM; Joo CK
    J Biol Chem; 2010 Aug; 285(34):26618-27. PubMed ID: 20547485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1.
    Carr HS; Zuo Y; Oh W; Frost JA
    Mol Cell Biol; 2013 Jul; 33(14):2773-86. PubMed ID: 23689132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular signal-regulated kinase and Akt activation play a critical role in the process of hepatocyte growth factor-induced epithelial-mesenchymal transition.
    Tanahashi T; Osada S; Yamada A; Kato J; Yawata K; Mori R; Imai H; Sasaki Y; Saito S; Tanaka Y; Nonaka K; Yoshida K
    Int J Oncol; 2013 Feb; 42(2):556-64. PubMed ID: 23229794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes.
    Kojima T; Takano K; Yamamoto T; Murata M; Son S; Imamura M; Yamaguchi H; Osanai M; Chiba H; Himi T; Sawada N
    Liver Int; 2008 Apr; 28(4):534-45. PubMed ID: 18031476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential roles of Src in transforming growth factor-ß regulation of growth arrest, epithelial-to-mesenchymal transition and cell migration in pancreatic ductal adenocarcinoma cells.
    Ungefroren H; Sebens S; Groth S; Gieseler F; Fändrich F
    Int J Oncol; 2011 Mar; 38(3):797-805. PubMed ID: 21225226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells.
    Zhang Z; Liu ZB; Ren WM; Ye XG; Zhang YY
    Int J Mol Med; 2012 Oct; 30(4):856-62. PubMed ID: 22797360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rac1 controls the subcellular localization of the Rho guanine nucleotide exchange factor Net1A to regulate focal adhesion formation and cell spreading.
    Carr HS; Morris CA; Menon S; Song EH; Frost JA
    Mol Cell Biol; 2013 Feb; 33(3):622-34. PubMed ID: 23184663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor beta signaling via Ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses.
    Suzuki K; Wilkes MC; Garamszegi N; Edens M; Leof EB
    Cancer Res; 2007 Apr; 67(8):3673-82. PubMed ID: 17440079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells.
    Wang T; Zhang L; Shi C; Sun H; Wang J; Li R; Zou Z; Ran X; Su Y
    Int J Biochem Cell Biol; 2012 Feb; 44(2):366-76. PubMed ID: 22119803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals.
    Zhang G; Kernan KA; Collins SJ; Cai X; López-Guisa JM; Degen JL; Shvil Y; Eddy AA
    J Am Soc Nephrol; 2007 Mar; 18(3):846-59. PubMed ID: 17267741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Src stimulates Abl-dependent phosphorylation of the guanine exchange factor Net1A to promote its cytosolic localization and cell motility.
    Sprenger A; Carr HS; Ulu A; Frost JA
    J Biol Chem; 2023 Jul; 299(7):104887. PubMed ID: 37271338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells.
    Lien SC; Usami S; Chien S; Chiu JJ
    Cell Signal; 2006 Aug; 18(8):1270-8. PubMed ID: 16310342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smad3 regulates E-cadherin via miRNA-200 pathway.
    Ahn SM; Cha JY; Kim J; Kim D; Trang HT; Kim YM; Cho YH; Park D; Hong S
    Oncogene; 2012 Jun; 31(25):3051-9. PubMed ID: 22020340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT).
    Kasai H; Allen JT; Mason RM; Kamimura T; Zhang Z
    Respir Res; 2005 Jun; 6(1):56. PubMed ID: 15946381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogenic Ras blocks transforming growth factor-beta-induced cell-cycle arrest by degradation of p27 through a MEK/Erk/SKP2-dependent pathway.
    Schepers H; Wierenga AT; Eggen BJ; Vellenga E
    Exp Hematol; 2005 Jul; 33(7):747-57. PubMed ID: 15963850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity.
    Song EH; Oh W; Ulu A; Carr HS; Zuo Y; Frost JA
    J Cell Sci; 2015 Mar; 128(5):913-22. PubMed ID: 25588829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells.
    Gan Y; Shi C; Inge L; Hibner M; Balducci J; Huang Y
    Oncogene; 2010 Sep; 29(35):4947-58. PubMed ID: 20562913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes.
    Santibañez JF
    FEBS Lett; 2006 Oct; 580(22):5385-91. PubMed ID: 16989819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.