These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 21987061)

  • 1. Cardiac ion channels and mechanisms for protection against atrial fibrillation.
    Grunnet M; Bentzen BH; Sørensen US; Diness JG
    Rev Physiol Biochem Pharmacol; 2012; 162():1-58. PubMed ID: 21987061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacology of cardiac potassium channels.
    Li GR; Dong MQ
    Adv Pharmacol; 2010; 59():93-134. PubMed ID: 20933200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation.
    Diness JG; Sørensen US; Nissen JD; Al-Shahib B; Jespersen T; Grunnet M; Hansen RS
    Circ Arrhythm Electrophysiol; 2010 Aug; 3(4):380-90. PubMed ID: 20562443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifibrillatory agents and potassium channels in the atria: pore block versus channel trafficking.
    McEwen DP; Martens JR
    Mol Interv; 2009 Apr; 9(2):79-86. PubMed ID: 19401540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiarrhythmic therapy in atrial fibrillation.
    Ravens U
    Pharmacol Ther; 2010 Oct; 128(1):129-45. PubMed ID: 20624425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ion channels and arrhythmias].
    Borchard U; Hafner D
    Z Kardiol; 2000; 89 Suppl 3():6-12. PubMed ID: 10810780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atrial-selective K
    Ravens U
    Can J Physiol Pharmacol; 2017 Nov; 95(11):1313-1318. PubMed ID: 28738160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a highly selective acetylcholine-activated K+ channel blocker on experimental atrial fibrillation.
    Machida T; Hashimoto N; Kuwahara I; Ogino Y; Matsuura J; Yamamoto W; Itano Y; Zamma A; Matsumoto R; Kamon J; Kobayashi T; Ishiwata N; Yamashita T; Ogura T; Nakaya H
    Circ Arrhythm Electrophysiol; 2011 Feb; 4(1):94-102. PubMed ID: 21156770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacotherapy of atrial fibrillation: a pathophysiological perspective and review.
    Jacob S; Ali OA; Pidlaoan V; Badheka AO; Kerin NZ
    Am J Ther; 2011 May; 18(3):241-60. PubMed ID: 20861719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias.
    Hatem SN; Coulombe A; Balse E
    J Mol Cell Cardiol; 2010 Jan; 48(1):90-5. PubMed ID: 19744488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding role of SK channels in cardiac electrophysiology.
    Mahida S
    Heart Rhythm; 2014 Jul; 11(7):1233-8. PubMed ID: 24681007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity.
    Burashnikov A; Barajas-Martinez H; Hu D; Robinson VM; Grunnet M; Antzelevitch C
    J Cardiovasc Pharmacol; 2020 Aug; 76(2):164-172. PubMed ID: 32453071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca(2+)-activated K(+) channels.
    Skibsbye L; Diness JG; Sørensen US; Hansen RS; Grunnet M
    J Cardiovasc Pharmacol; 2011 Jun; 57(6):672-81. PubMed ID: 21394037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New pharmacological targets and treatments for atrial fibrillation.
    Carlsson L; Duker G; Jacobson I
    Trends Pharmacol Sci; 2010 Aug; 31(8):364-71. PubMed ID: 20605645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aldosterone and mineralocorticoid receptor antagonism on cardiac ion channels in the view of upstream therapy of atrial fibrillation.
    Laszlo R; Bentz K; Schreieck J
    Gen Physiol Biophys; 2011 Mar; 30(1):11-9. PubMed ID: 21460407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses.
    Haugaard MM; Hesselkilde EZ; Pehrson S; Carstensen H; Flethøj M; Præstegaard KF; Sørensen US; Diness JG; Grunnet M; Buhl R; Jespersen T
    Heart Rhythm; 2015 Apr; 12(4):825-35. PubMed ID: 25542425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodelling of cardiac repolarization: how homeostatic responses can lead to arrhythmogenesis.
    Michael G; Xiao L; Qi XY; Dobrev D; Nattel S
    Cardiovasc Res; 2009 Feb; 81(3):491-9. PubMed ID: 18826964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiple ion channel blocker, NIP-142, for the treatment of atrial fibrillation.
    Tanaka H; Hashimoto N
    Cardiovasc Drug Rev; 2007; 25(4):342-56. PubMed ID: 18078434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model systems for the discovery and development of antiarrhythmic drugs.
    Nattel S; Duker G; Carlsson L
    Prog Biophys Mol Biol; 2008; 98(2-3):328-39. PubMed ID: 19038282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle?
    Grunnet M
    Acta Physiol (Oxf); 2010 Feb; 198 Suppl 676():1-48. PubMed ID: 20132149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.