BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21987105)

  • 21. Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites.
    Kirthi AV; Rahuman AA; Rajakumar G; Marimuthu S; Santhoshkumar T; Jayaseelan C; Velayutham K
    Parasitol Res; 2011 Aug; 109(2):461-72. PubMed ID: 21340566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acaricidal, insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites.
    Madhumitha G; Rajakumar G; Roopan SM; Rahuman AA; Priya KM; Saral AM; Khan FR; Khanna VG; Velayutham K; Jayaseelan C; Kamaraj C; Elango G
    Parasitol Res; 2012 Nov; 111(5):2189-99. PubMed ID: 22006187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO
    Thandapani K; Kathiravan M; Namasivayam E; Padiksan IA; Natesan G; Tiwari M; Giovanni B; Perumal V
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10328-10339. PubMed ID: 28537028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of botanical extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach.
    Zahir AA; Rahuman AA; Bagavan A; Santhoshkumar T; Mohamed RR; Kamaraj C; Rajakumar G; Elango G; Jayaseelan C; Marimuthu S
    Parasitol Res; 2010 Aug; 107(3):585-92. PubMed ID: 20467752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust.
    Irshad MA; Nawaz R; Zia Ur Rehman M; Imran M; Ahmad J; Ahmad S; Inam A; Razzaq A; Rizwan M; Ali S
    Chemosphere; 2020 Nov; 258():127352. PubMed ID: 32554013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract.
    Roopan SM; Bharathi A; Prabhakarn A; Rahuman AA; Velayutham K; Rajakumar G; Padmaja RD; Lekshmi M; Madhumitha G
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():86-90. PubMed ID: 22983203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method.
    M S; K B; M B; S J; S A; A S; P N; R S
    J Photochem Photobiol B; 2017 Jun; 171():117-124. PubMed ID: 28501689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract.
    Alavi M; Karimi N
    Artif Cells Nanomed Biotechnol; 2018 Dec; 46(8):2066-2081. PubMed ID: 29233039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities.
    Ponarulselvam S; Panneerselvam C; Murugan K; Aarthi N; Kalimuthu K; Thangamani S
    Asian Pac J Trop Biomed; 2012 Jul; 2(7):574-80. PubMed ID: 23569974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of Zinc Oxide Nanoparticles Using
    Bangroo A; Malhotra A; Sharma U; Jain A; Kaur A
    Nutr Cancer; 2022; 74(4):1489-1496. PubMed ID: 34309470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Invitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus.
    Banumathi B; Malaikozhundan B; Vaseeharan B
    Vet Parasitol; 2016 Jan; 216():93-100. PubMed ID: 26801601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1.
    Rajkumari J; Magdalane CM; Siddhardha B; Madhavan J; Ramalingam G; Al-Dhabi NA; Arasu MV; Ghilan AKM; Duraipandiayan V; Kaviyarasu K
    J Photochem Photobiol B; 2019 Dec; 201():111667. PubMed ID: 31683167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae).
    Sundaravadivelan C; Nalini Padmanabhan M; Sivaprasath P; Kishmu L
    Parasitol Res; 2013 Jan; 112(1):303-11. PubMed ID: 23052770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors.
    Kumar D; Kumar G; Agrawal V
    Parasitol Res; 2018 Feb; 117(2):377-389. PubMed ID: 29250727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa.
    Angajala G; Ramya R; Subashini R
    Acta Trop; 2014 Jul; 135():19-26. PubMed ID: 24681220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective Antimicrobial Activity of Green ZnO Nano Particles of
    Gupta M; Tomar RS; Kaushik S; Mishra RK; Sharma D
    Front Microbiol; 2018; 9():2030. PubMed ID: 30233518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles.
    Mukunthan KS; Elumalai EK; Patel TN; Murty VR
    Asian Pac J Trop Biomed; 2011 Aug; 1(4):270-4. PubMed ID: 23569773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice.
    Rajakumar G; Rahuman AA; Chung IM; Kirthi AV; Marimuthu S; Anbarasan K
    Parasitol Res; 2015 Apr; 114(4):1397-406. PubMed ID: 25653029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti.
    Kumar VA; Ammani K; Jobina R; Subhaswaraj P; Siddhardha B
    J Photochem Photobiol B; 2017 Jun; 171():1-8. PubMed ID: 28460330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector.
    Santhosh SB; Yuvarajan R; Natarajan D
    Parasitol Res; 2015 Aug; 114(8):3087-96. PubMed ID: 26002825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.