These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 21987368)

  • 41. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Needle insertion into soft tissue: a survey.
    Abolhassani N; Patel R; Moallem M
    Med Eng Phys; 2007 May; 29(4):413-31. PubMed ID: 16938481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of a hexapod surgical system for robotic micro-macro manipulations in ocular surgery.
    Bourges JL; Hubschman JP; Wilson J; Prince S; Tsao TC; Schwartz S
    Ophthalmic Res; 2011; 46(1):25-30. PubMed ID: 21109761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Role of Direct and Visual Force Feedback in Suturing Using a 7-DOF Dual-Arm Teleoperated System.
    Talasaz A; Trejos AL; Patel RV
    IEEE Trans Haptics; 2017; 10(2):276-287. PubMed ID: 28113408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robotic suturing: technique and benefit in advanced laparoscopic surgery.
    Kenngott HG; Muller-Stich BP; Reiter MA; Rassweiler J; Gutt CN
    Minim Invasive Ther Allied Technol; 2008; 17(3):160-7. PubMed ID: 18609002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison on intracochlear disturbances between drilling a manual and robotic cochleostomy.
    Assadi MZ; Du X; Dalton J; Henshaw S; Coulson CJ; Reid AP; Proops DW; Brett PN
    Proc Inst Mech Eng H; 2013 Sep; 227(9):1002-8. PubMed ID: 23804953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of an integrated master-slave robotic system for minimally invasive surgery.
    Li J; Zhou N; Wang S; Gao Y; Liu D
    Int J Med Robot; 2012 Mar; 8(1):77-84. PubMed ID: 21984343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy.
    Challacombe B; Patriciu A; Glass J; Aron M; Jarrett T; Kim F; Pinto P; Stoianovici D; Smeeton N; Tiptaft R; Kavoussi L; Dasgupta P
    Comput Aided Surg; 2005 May; 10(3):165-71. PubMed ID: 16321914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initial evaluation of robotic technology for microsurgical vasovasostomy.
    Kuang W; Shin PR; Matin S; Thomas AJ
    J Urol; 2004 Jan; 171(1):300-3. PubMed ID: 14665899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pneumatically driven surgical forceps displaying a magnified grasping torque.
    Iwai T; Kanno T; Miyazaki T; Haraguchi D; Kawashima K
    Int J Med Robot; 2020 Apr; 16(2):e2051. PubMed ID: 31710158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Observations on rotating needle insertions using a brachytherapy robot.
    Meltsner MA; Ferrier NJ; Thomadsen BR
    Phys Med Biol; 2007 Oct; 52(19):6027-37. PubMed ID: 17881817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robotic mitral valve surgery.
    Kypson AP; Nifong LW; Chitwood WR
    Surg Clin North Am; 2003 Dec; 83(6):1387-403. PubMed ID: 14712874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a one-body optical torque sensor for rehabilitation robotic systems.
    Gu GM; Chang PH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975411. PubMed ID: 22275614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lesion positioning method of a CT-guided surgical robotic system for minimally invasive percutaneous lung.
    Zhang TF; Fu Z; Wang Y; Shi WY; Chen GB; Fei J
    Int J Med Robot; 2020 Apr; 16(2):e2044. PubMed ID: 31674135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A surgical telemanipulator for femur shaft fracture reduction.
    Westphal R; Winkelbach S; Gösling T; Hüfner T; Faulstich J; Martin P; Krettek C; Wahl FM
    Int J Med Robot; 2006 Sep; 2(3):238-50. PubMed ID: 17520638
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pediatric robotic surgery: early assessment.
    van Haasteren G; Levine S; Hayes W
    Pediatrics; 2009 Dec; 124(6):1642-9. PubMed ID: 19917586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel knot-tying approach for minimally invasive surgical robot systems.
    Wang S; Wang H; Yue L
    Int J Med Robot; 2008 Sep; 4(3):268-76. PubMed ID: 18777516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transoral robotic surgery (TORS): glottic microsurgery in a canine model.
    O'Malley BW; Weinstein GS; Hockstein NG
    J Voice; 2006 Jun; 20(2):263-8. PubMed ID: 16472973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robotic microsurgical vasovasostomy and vasoepididymostomy: a prospective randomized study in a rat model.
    Schiff J; Li PS; Goldstein M
    J Urol; 2004 Apr; 171(4):1720-5. PubMed ID: 15017273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.