These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 21987368)

  • 61. Frimand Needle Holder Reduces Suturing Time and Surgical Stress When Suturing in Palm Grip.
    Frimand Rönnow CF; Jeppsson B; Thorlacius H
    Surg Innov; 2016 Jun; 23(3):235-41. PubMed ID: 26474606
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [A new method of applying continuous microsurgical suture].
    Baranov IIa; Bortsov VN; Konstantinova LM
    Vestn Oftalmol; 1992; 108(3):47-9. PubMed ID: 1481333
    [No Abstract]   [Full Text] [Related]  

  • 63. Zerobot®: A Remote-controlled Robot for Needle Insertion in CT-guided Interventional Radiology Developed at Okayama University.
    Hiraki T; Kamegawa T; Matsuno T; Komaki T; Sakurai J; Kanazawa S
    Acta Med Okayama; 2018 Dec; 72(6):539-546. PubMed ID: 30573907
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design, calibration and evaluation of a robotic needle-positioning system for small animal imaging applications.
    Waspe AC; Cakiroglu HJ; Lacefield JC; Fenster A
    Phys Med Biol; 2007 Apr; 52(7):1863-78. PubMed ID: 17374916
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Master-slave robotic system for needle indentation and insertion.
    Shin J; Zhong Y; Gu C
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):100-105. PubMed ID: 28937302
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of a force feedback function in a surgical robot on the suturing procedure.
    Yamasaki Y; Tokunaga M; Sakai Y; Kayasuga H; Nishihara T; Tadano K; Kawashima K; Haruki S; Kinugasa Y
    Surg Endosc; 2024 Mar; 38(3):1222-1229. PubMed ID: 38092971
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multi-objective optimization of end-to-end sutured anastomosis for robot-assisted surgery.
    Liu Y; Wang S; Hu SJ
    Int J Med Robot; 2010 Sep; 6(3):368-75. PubMed ID: 20652861
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A study on autonomous suturing task assignment in robot-assisted minimally invasive surgery.
    Gao S; Ji S; Feng M; Lu X; Tong W
    Int J Med Robot; 2021 Feb; 17(1):1-10. PubMed ID: 33049099
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery.
    Yu H; Jiang J; Xie L; Liu L; Shi Y; Cai P
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):136-43. PubMed ID: 24345276
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of a needle driver with multiple degrees of freedom for neonatal laparoscopic surgery.
    Ishimaru T; Takazawa S; Uchida H; Kawashima H; Fujii M; Harada K; Sugita N; Mitsuishi M; Iwanaka T
    J Laparoendosc Adv Surg Tech A; 2013 Jul; 23(7):644-8. PubMed ID: 23755855
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Capturing fine-grained details for video-based automation of suturing skills assessment.
    Hung AJ; Bao R; Sunmola IO; Huang DA; Nguyen JH; Anandkumar A
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):545-552. PubMed ID: 36282465
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optimal Needle Grasp Selection for Automatic Execution of Suturing Tasks in Robotic Minimally Invasive Surgery.
    Liu T; Çavuşoğlu MC
    IEEE Int Conf Robot Autom; 2015 May; 2015():2894-2900. PubMed ID: 26413382
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hand-held multi-DOF robotic forceps for neurosurgery designed for dexterous manipulation in deep and narrow space.
    Okubo T; Harada K; Fujii M; Tanaka S; Ishimaru T; Iwanaka T; Nakatomi H; Sora S; Morita A; Sugita N; Mitsuishi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6868-71. PubMed ID: 25571574
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Endoscopic robotic suturing: The way forward.
    Kaan HL; Ho KY
    Saudi J Gastroenterol; 2019; 25(5):272-276. PubMed ID: 30900610
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Use of puncture force measurement to investigate the conditions of blood vessel needle insertion.
    Kobayashi Y; Hamano R; Watanabe H; Hong J; Toyoda K; Hashizume M; Fujie MG
    Med Eng Phys; 2013 May; 35(5):684-9. PubMed ID: 23332178
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automation of a suturing device for minimally invasive surgery.
    Göpel T; Härtl F; Schneider A; Buss M; Feussner H
    Surg Endosc; 2011 Jul; 25(7):2100-4. PubMed ID: 21298543
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.
    Pacchierotti C; Abayazid M; Misra S; Prattichizzo D
    IEEE Trans Haptics; 2014; 7(4):551-6. PubMed ID: 25265614
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.
    Woo J; Choi JH; Seo JT; Kim TI; Yi BJ
    Yonsei Med J; 2017 Jan; 58(1):139-143. PubMed ID: 27873506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.