BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21988282)

  • 1. Thermodynamic control over the competitive anchoring of N719 dye on nanocrystalline TiO2 for improving photoinduced electron generation.
    Lim J; Kwon YS; Park SH; Song IY; Choi J; Park T
    Langmuir; 2011 Dec; 27(23):14647-53. PubMed ID: 21988282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance.
    Xin X; Scheiner M; Ye M; Lin Z
    Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopic investigation on TiO2-N719 dye interfaces using Ag@TiO2 nanoparticles and potential correlation strategies.
    Qiu Z; Zhang M; Wu DY; Ding SY; Zuo QQ; Huang YF; Shen W; Lin XD; Tian ZQ; Mao BW
    Chemphyschem; 2013 Jul; 14(10):2217-24. PubMed ID: 23824871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells.
    Shen Q; Ogomi Y; Park BW; Inoue T; Pandey SS; Miyamoto A; Fujita S; Katayama K; Toyoda T; Hayase S
    Phys Chem Chem Phys; 2012 Apr; 14(13):4605-13. PubMed ID: 22354497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells.
    Jeong NC; Prasittichai C; Hupp JT
    Langmuir; 2011 Dec; 27(23):14609-14. PubMed ID: 21992773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N719 dye-sensitized organophotocatalysis: enantioselective tandem Michael addition/oxyamination of aldehydes.
    Yoon HS; Ho XH; Jang J; Lee HJ; Kim SJ; Jang HY
    Org Lett; 2012 Jul; 14(13):3272-5. PubMed ID: 22681592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bragg stack-functionalized counter electrode for solid-state dye-sensitized solar cells.
    Park JT; Prosser JH; Kim DJ; Kim JH; Lee D
    ChemSusChem; 2013 May; 6(5):856-64. PubMed ID: 23576320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.
    Lee JW; Hwang KJ; Park DW; Park KH; Shim WG; Kim SC
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3717-21. PubMed ID: 18047044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
    Suyitno S; Saputra TJ; Supriyanto A; Arifin Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():99-104. PubMed ID: 25875031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mesoporous TiO₂ bead diameter in working electrodes on the efficiency of dye-sensitized solar cells.
    Chen Y; Huang F; Chen D; Cao L; Zhang XL; Caruso RA; Cheng YB
    ChemSusChem; 2011 Oct; 4(10):1498-503. PubMed ID: 21954197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells.
    Andrade L; Zakeeruddin SM; Nazeeruddin MK; Ribeiro HA; Mendes A; Grätzel M
    Chemphyschem; 2009 May; 10(7):1117-24. PubMed ID: 19308974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.
    Yang L; Leung WW; Wang J
    Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Induced Broadband Light-Harvesting for Dye-Sensitized Solar Cells Using a Mixture of Gold Nanocrystals.
    Zhang Y; Sun Z; Cheng S; Yan F
    ChemSusChem; 2016 Apr; 9(8):813-9. PubMed ID: 27110902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior.
    Bell TD; Pagba C; Myahkostupov M; Hofkens J; Piotrowiak P
    J Phys Chem B; 2006 Dec; 110(50):25314-21. PubMed ID: 17165977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of electron transfer in Ru(dcbpy)2(NCS)2 sensitized nanocrystalline TiO2 and SnO2 films induced by red-wing excitation.
    Myllyperkiö P; Benko G; Korppi-Tommola J; Yartsev AP; Sundström V
    Phys Chem Chem Phys; 2008 Feb; 10(7):996-1002. PubMed ID: 18259639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique.
    Miao Q; Wu L; Cui J; Huang M; Ma T
    Adv Mater; 2011 Jun; 23(24):2764-8. PubMed ID: 21495092
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantitative evaluation of electron injection efficiency in dye-sensitized TiO(2) films.
    Katoh R
    Ambio; 2012; 41 Suppl 2(Suppl 2):143-8. PubMed ID: 22434442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells.
    Pang H; Yang H; Guo CX; Lu J; Li CM
    Chem Commun (Camb); 2012 Sep; 48(70):8832-4. PubMed ID: 22836665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct assembly of preformed nanoparticles and graft copolymer for the fabrication of micrometer-thick, organized TiO2 films: high efficiency solid-state dye-sensitized solar cells.
    Ahn SH; Chi WS; Park JT; Koh JK; Roh DK; Kim JH
    Adv Mater; 2012 Jan; 24(4):519-22. PubMed ID: 22213245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies.
    Pérez León C; Kador L; Peng B; Thelakkat M
    J Phys Chem B; 2006 May; 110(17):8723-30. PubMed ID: 16640428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.