These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21988407)

  • 21. Alkylation-induced oxidative cell injury of renal proximal tubular cells: involvement of glutathione redox-cycle inhibition.
    van de Water B; Zoeteweij JP; Nagelkerke JF
    Arch Biochem Biophys; 1996 Mar; 327(1):71-80. PubMed ID: 8615698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. S-(1,2-dichlorovinyl)-L-cysteine-induced nephrotoxicity in the New Zealand white rabbit: characterization of proteinuria and examination of the potential role of oxidative injury.
    Davis JW; Blakeman DP; Jolly RA; Packwood WH; Kolaja GJ; Petry TW
    Toxicol Pathol; 1995; 23(4):487-97. PubMed ID: 7501960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide, a reactive metabolite of S-(1,2,2-Trichlorovinyl)-L-cysteine formed in rat liver and kidney microsomes, is a potent nephrotoxicant.
    Elfarra AA; Krause RJ
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1095-101. PubMed ID: 17347324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biotransformation, excretion and nephrotoxicity of haloalkene-derived cysteine S-conjugates.
    Birner G; Bernauer U; Werner M; Dekant W
    Arch Toxicol; 1997; 72(1):1-8. PubMed ID: 9458184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The acute effects of S-(1,2-dichlorovinyl)-L-cysteine and related chemicals on renal function and ultrastructure in the pentobarbital-anesthetized dog: structure-activity relationships, biotransformation, and unique site-specific nephrotoxicity.
    Koechel DA; Krejci ME; Ridgewell RE
    Fundam Appl Toxicol; 1991 Jul; 17(1):17-33. PubMed ID: 1916074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of [14C]- and [35S]S-(1,2-dichlorovinyl)-L-cysteine in the male Fischer 344 rat.
    Finkelstein MB; Patel NJ; Anders MW
    Drug Metab Dispos; 1995 Jan; 23(1):124-8. PubMed ID: 7720515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the genotoxicity of trichloroethylene and its metabolite, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), in the comet assay in rat kidney.
    Clay P
    Mutagenesis; 2008 Jan; 23(1):27-33. PubMed ID: 18003627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitation of multiple pathways for the metabolism of nephrotoxic cysteine conjugates using selective inhibitors of L-alpha-hydroxy acid oxidase (L-amino acid oxidase) and cysteine conjugate beta-lyase.
    Stevens JL; Hatzinger PB; Hayden PJ
    Drug Metab Dispos; 1989; 17(3):297-303. PubMed ID: 2568912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal activation of trichloroethene and S-(1,2-dichlorovinyl)-L-cysteine and cell proliferative responses in the kidneys of F344 rats and B6C3F1 mice.
    Eyre RJ; Stevens DK; Parker JC; Bull RJ
    J Toxicol Environ Health; 1995 Dec; 46(4):465-81. PubMed ID: 8523472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of S-(1,2-dichlorovinyl)glutathione-induced nephrotoxicity.
    Elfarra AA; Jakobson I; Anders MW
    Biochem Pharmacol; 1986 Jan; 35(2):283-8. PubMed ID: 2867768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intranephron distribution of cysteine S-conjugate beta-lyase activity and its implication for hexachloro-1,3-butadiene-induced nephrotoxicity in rats.
    Kim HS; Cha SH; Abraham DG; Cooper AJ; Endou H
    Arch Toxicol; 1997; 71(3):131-41. PubMed ID: 9049049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury.
    van de Water B; Zoeteweij JP; de Bont HJ; Nagelkerke JF
    Mol Pharmacol; 1995 Nov; 48(5):928-37. PubMed ID: 7476924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity.
    Krause RJ; Lash LH; Elfarra AA
    J Pharmacol Exp Ther; 2003 Jan; 304(1):185-91. PubMed ID: 12490590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of the nephrotoxin dichloroacetylene by glutathione conjugation.
    Kanhai W; Dekant W; Henschler D
    Chem Res Toxicol; 1989; 2(1):51-6. PubMed ID: 2519231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic analysis of S-(1,2-dichlorovinyl)-L-cysteine-induced cataractogenesis in vitro.
    Walsh Clang CM; Aleo MD
    Toxicol Appl Pharmacol; 1997 Sep; 146(1):144-55. PubMed ID: 9299606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of tissue repair in survival from s-(1,2-dichlorovinyl)-L-cysteine-induced acute renal tubular necrosis in the mouse.
    Vaidya VS; Shankar K; Lock EA; Bucci TJ; Mehendale HM
    Toxicol Sci; 2003 Jul; 74(1):215-27. PubMed ID: 12730612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic-based evaluation of trichloroethylene glutathione and cysteine conjugates demonstrate phenotype-dependent stress responses in a panel of human in vitro models.
    Capinha L; Zhang Y; Holzer AK; Ückert AK; Zana M; Carta G; Murphy C; Baldovini J; Mazidi Z; Grillari J; Dinnyes A; van de Water B; Leist M; Commandeur JNM; Jennings P
    Arch Toxicol; 2023 Feb; 97(2):523-545. PubMed ID: 36576512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of a S(trans-1,2-dichlorovinyl)-L-cysteine-induced renal tubular toxicity by glutathione.
    Hassall CD; Brendel K; Gandolfi AJ
    J Appl Toxicol; 1983 Dec; 3(6):321-5. PubMed ID: 6677655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of S-(1,2-dichlorovinyl)-L-cysteine- and S-(1,2-dichlorovinyl)-L-homocysteine-induced renal mitochondrial toxicity.
    Lash LH; Anders MW
    Mol Pharmacol; 1987 Oct; 32(4):549-56. PubMed ID: 3670284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioactivation of trichloroethylene to three regioisomeric glutathione conjugates by liver fractions and recombinant human glutathione transferases: Species differences and implications for human risk assessment.
    Capinha L; Jennings P; Commandeur JNM
    Toxicol Lett; 2021 May; 341():94-106. PubMed ID: 33539969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.