BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21988912)

  • 21. Electroreception, electrogenesis and electric signal evolution.
    Crampton WGR
    J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental origin of shark electrosensory organs.
    Freitas R; Zhang G; Albert JS; Evans DH; Cohn MJ
    Evol Dev; 2006; 8(1):74-80. PubMed ID: 16409384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes.
    Webb JF; Northcutt RG
    Brain Behav Evol; 1997; 50(3):139-51. PubMed ID: 9288414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes).
    Fields RD; Bullock TH; Lange GD
    Brain Behav Evol; 1993; 41(6):269-89. PubMed ID: 8391892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus.
    Song JK; Northcutt RG
    Brain Behav Evol; 1991; 37(1):10-37. PubMed ID: 2029607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pit organs in axolotls: a second class of lateral line neuromasts.
    Northcutt RG; Bleckmann H
    J Comp Physiol A; 1993 May; 172(4):439-46. PubMed ID: 8315607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome profiles of sturgeon lateral line electroreceptor and mechanoreceptor during regeneration.
    Wang J; Lu C; Zhao Y; Tang Z; Song J; Fan C
    BMC Genomics; 2020 Dec; 21(1):875. PubMed ID: 33287707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Papilla cells may guard the entrance to ampullary organs of Polyodon electroreceptors.
    Russell DF; Ahmetspahic M; Neiman LL
    Tissue Cell; 2022 Oct; 78():101868. PubMed ID: 35987072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Denticle-embedded ampullary organs in a Cretaceous shark provide unique insight into the evolution of elasmobranch electroreceptors.
    Vullo R; Guinot G
    Naturwissenschaften; 2015 Oct; 102(9-10):65. PubMed ID: 26420508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateral line placodes of aquatic vertebrates are evolutionarily conserved in mammals.
    Washausen S; Knabe W
    Biol Open; 2018 Jun; 7(6):. PubMed ID: 29848488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fine structure of the lateral-line organs of larval Ichthyophis (Amphibia: Gymnophiona).
    Wahnschaffe U; Fritzsch B; Himstedt W
    J Morphol; 1985 Dec; 186(3):369-377. PubMed ID: 30005566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomy of the posterior lateral line system in young larvae of the zebrafish.
    Metcalfe WK; Kimmel CB; Schabtach E
    J Comp Neurol; 1985 Mar; 233(3):377-89. PubMed ID: 3980776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-Scale Convergence of Receptor Cell Arrays Onto Afferent Terminal Arbors in the Lorenzinian Electroreceptors of
    Russell DF; Warnock TC; Zhang W; Rogers DE; Neiman LL
    Front Neuroanat; 2020; 14():50. PubMed ID: 33192338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroreception in the Guiana dolphin (Sotalia guianensis).
    Czech-Damal NU; Liebschner A; Miersch L; Klauer G; Hanke FD; Marshall C; Dehnhardt G; Hanke W
    Proc Biol Sci; 2012 Feb; 279(1729):663-8. PubMed ID: 21795271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finned fish, Polyodon spathula: implications for the origin of tetrapod limbs.
    Metscher BD; Takahashi K; Crow K; Amemiya C; Nonaka DF; Wagner GP
    Evol Dev; 2005; 7(3):186-95. PubMed ID: 15876191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogeny and homology of cranial bones associated with lateral-line canals of the Senegal Bichir, Polypterus senegalus (Actinopterygii: Cladistii: Polypteriformes), with a discussion on the formation of lateral-line canal bones in fishes.
    Rizzato PP; Pospisilova A; Hilton EJ; Bockmann FA
    J Anat; 2020 Sep; 237(3):439-467. PubMed ID: 32285471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin and early development of the posterior lateral line system of zebrafish.
    Sarrazin AF; Nuñez VA; Sapède D; Tassin V; Dambly-Chaudière C; Ghysen A
    J Neurosci; 2010 Jun; 30(24):8234-44. PubMed ID: 20554875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae).
    Janssen J; Coombs S; Hoekstra D; Platt C
    Brain Behav Evol; 1987; 30(3-4):210-29. PubMed ID: 3664263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui.
    Schlosser G; Kintner C; Northcutt RG
    Dev Biol; 1999 Sep; 213(2):354-69. PubMed ID: 10479453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli.
    Mogdans J
    J Fish Biol; 2019 Jul; 95(1):53-72. PubMed ID: 30873616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.