These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 21988935)

  • 1. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometer counts and raw acceleration output in relation to mechanical loading.
    Rowlands AV; Stiles VH
    J Biomech; 2012 Feb; 45(3):448-54. PubMed ID: 22218284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the GENEA Accelerometer.
    Esliger DW; Rowlands AV; Hurst TL; Catt M; Murray P; Eston RG
    Med Sci Sports Exerc; 2011 Jun; 43(6):1085-93. PubMed ID: 21088628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification accuracy of the wrist-worn gravity estimator of normal everyday activity accelerometer.
    Welch WA; Bassett DR; Thompson DL; Freedson PS; Staudenmayer JW; John D; Steeves JA; Conger SA; Ceaser T; Howe CA; Sasaki JE; Fitzhugh EC
    Med Sci Sports Exerc; 2013 Oct; 45(10):2012-9. PubMed ID: 23584403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to measuring activity in chronic obstructive pulmonary disease: using 2 activity monitors to classify daily activity.
    Cohen MD; Cutaia M
    J Cardiopulm Rehabil Prev; 2010; 30(3):186-94. PubMed ID: 20216326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity classification using the GENEA: optimum sampling frequency and number of axes.
    Zhang S; Murray P; Zillmer R; Eston RG; Catt M; Rowlands AV
    Med Sci Sports Exerc; 2012 Nov; 44(11):2228-34. PubMed ID: 22617400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children.
    Phillips LR; Parfitt G; Rowlands AV
    J Sci Med Sport; 2013 Mar; 16(2):124-8. PubMed ID: 22770768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-validation of waist-worn GENEA accelerometer cut-points.
    Welch WA; Bassett DR; Freedson PS; John D; Steeves JA; Conger SA; Ceaser TG; Howe CA; Sasaki JE
    Med Sci Sports Exerc; 2014 Sep; 46(9):1825-30. PubMed ID: 24496118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing cut-points for physical activity classification using triaxial accelerometer in middle-aged recreational marathoners.
    Hernando C; Hernando C; Collado EJ; Panizo N; Martinez-Navarro I; Hernando B
    PLoS One; 2018; 13(8):e0202815. PubMed ID: 30157271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life.
    Gyllensten IC; Bonomi AG
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2656-63. PubMed ID: 21712150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actigraph accelerometer interinstrument reliability during free-living in adults.
    McClain JJ; Sisson SB; Tudor-Locke C
    Med Sci Sports Exerc; 2007 Sep; 39(9):1509-14. PubMed ID: 17805082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of raw acceleration from the GENEA and ActiGraph™ GT3X+ activity monitors.
    John D; Sasaki J; Staudenmayer J; Mavilia M; Freedson PS
    Sensors (Basel); 2013 Oct; 13(11):14754-63. PubMed ID: 24177727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspects of activity behavior as a determinant of the physical activity level.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    Scand J Med Sci Sports; 2012 Feb; 22(1):139-45. PubMed ID: 20536909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.