These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21989084)

  • 1. Adaptation of a haptic robot in a 3T fMRI.
    Snider J; Plank M; May L; Liu TT; Poizner H
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 21989084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.
    Menon S; Brantner G; Aholt C; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4137-42. PubMed ID: 24110643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phantom haptic device upgrade for use in fMRI.
    Hribar A; Koritnik B; Munih M
    Med Biol Eng Comput; 2009 Jun; 47(6):677-84. PubMed ID: 19263104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic fMRI: Reliability and performance of electromagnetic haptic interfaces for motion and force neuroimaging experiments.
    Menon S; Zhu J; Goyal D; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3930-3935. PubMed ID: 29060757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards MRI guided surgical manipulator.
    Chinzei K; Miller K
    Med Sci Monit; 2001; 7(1):153-63. PubMed ID: 11208513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic fMRI: using classification to quantify task-correlated noise during goal-directed reaching motions.
    Menon S; Quigley P; Yu M; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2046-50. PubMed ID: 25570386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined virtual reality and haptic robotics induce space and movement invariant sensorimotor adaptation.
    Wilf M; Cerra Cheraka M; Jeanneret M; Ott R; Perrin H; Crottaz-Herbette S; Serino A
    Neuropsychologia; 2021 Jan; 150():107692. PubMed ID: 33232695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and validation of an MR-conditional robot for transcranial focused ultrasound surgery in infants.
    Price KD; Sin VW; Mougenot C; Pichardo S; Looi T; Waspe AC; Drake JM
    Med Phys; 2016 Sep; 43(9):4983. PubMed ID: 27587029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgical Robot with Environment Reconstruction and Force Feedback.
    Li X; Kesavadas T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1861-1866. PubMed ID: 30440759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Testing of fMRI-Compatibility of an Electrically Active Mechatronic Device for Robot-Assisted Sensorimotor Protocols.
    Farrens AJ; Zonnino A; Erwin A; O'Malley MK; Johnson CL; Ress D; Sergi F
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1595-1606. PubMed ID: 28829302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural design and analysis of pneumatic prostate seed implantation robot applied in magnetic resonance imaging environment.
    Li B; Yuan L; Wang C; Guo Y
    Int J Med Robot; 2022 Dec; 18(6):e2457. PubMed ID: 36063541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic fMRI: accurately estimating neural responses in motor, pre-motor, and somatosensory cortex during complex motor tasks.
    Menon S; Yu M; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2040-5. PubMed ID: 25570385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a shoulder-mounted robot for MRI-guided needle placement: phantom study.
    Monfaredi R; Iordachita I; Wilson E; Sze R; Sharma K; Krieger A; Fricke S; Cleary K
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1829-1841. PubMed ID: 30099660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.