These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21989084)

  • 21. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A haptic unit designed for magnetic-resonance-guided biopsy.
    Tse ZT; Elhawary H; Rea M; Young I; Davis BL; Lamperth M
    Proc Inst Mech Eng H; 2009 Feb; 223(2):159-72. PubMed ID: 19278193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task.
    Faure C; Fortin-Cote A; Robitaille N; Cardou P; Gosselin C; Laurendeau D; Mercier C; Bouyer L; McFadyen BJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2246-2254. PubMed ID: 32877337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel manipulation method of human body ownership using an fMRI-compatible master-slave system.
    Hara M; Salomon R; van der Zwaag W; Kober T; Rognini G; Nabae H; Yamamoto A; Blanke O; Higuchi T
    J Neurosci Methods; 2014 Sep; 235():25-34. PubMed ID: 24924875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.
    Monfaredi R; Wilson E; Sze R; Sharma K; Azizi B; Iordachita I; Cleary K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3643-6. PubMed ID: 26737082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active Haptic Perception in Robots: A Review.
    Seminara L; Gastaldo P; Watt SJ; Valyear KF; Zuher F; Mastrogiovanni F
    Front Neurorobot; 2019; 13():53. PubMed ID: 31379549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Test-retest reliability of fMRI experiments during robot-assisted active and passive stepping.
    Jaeger L; Marchal-Crespo L; Wolf P; Riener R; Kollias S; Michels L
    J Neuroeng Rehabil; 2015 Nov; 12():102. PubMed ID: 26577598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. H-Man: a planar, H-shape cabled differential robotic manipulandum for experiments on human motor control.
    Campolo D; Tommasino P; Gamage K; Klein J; Hughes CM; Masia L
    J Neurosci Methods; 2014 Sep; 235():285-97. PubMed ID: 25058923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface.
    Menon S; Stanley AA; Zhu J; Okamura AM; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2051-6. PubMed ID: 25570387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intuitive Spatial Tactile Feedback for Better Awareness about Robot Trajectory during Human-Robot Collaboration.
    Grushko S; Vysocký A; Heczko D; Bobovský Z
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.
    Andersson P; Pluim JP; Viergever MA; Ramsey NF
    Brain Topogr; 2013 Jan; 26(1):177-85. PubMed ID: 22965825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An MRI-compatible surgical robot for precise radiological interventions.
    Hempel E; Fischer H; Gumb L; Höhn T; Krause H; Voges U; Breitwieser H; Gutmann B; Durke J; Bock M; Melzer A
    Comput Aided Surg; 2003; 8(4):180-91. PubMed ID: 15360099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intraoperative magnetic resonance imaging-conditional robotic devices for therapy and diagnosis.
    Fisher T; Hamed A; Vartholomeos P; Masamune K; Tang G; Ren H; Tse ZT
    Proc Inst Mech Eng H; 2014 Mar; 228(3):303-18. PubMed ID: 24534419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.