BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

698 related articles for article (PubMed ID: 21989140)

  • 1. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
    Kong W; Mou X; Hu X
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent component analysis of Alzheimer's DNA microarray gene expression data.
    Kong W; Mou X; Liu Q; Chen Z; Vanderburg CR; Rogers JT; Huang X
    Mol Neurodegener; 2009 Jan; 4():5. PubMed ID: 19173745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge-based gene expression classification via matrix factorization.
    Schachtner R; Lutter D; Knollmüller P; Tomé AM; Theis FJ; Schmitz G; Stetter M; Vilda PG; Lang EW
    Bioinformatics; 2008 Aug; 24(15):1688-97. PubMed ID: 18535085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Significant genes extraction and analysis of gene expression data based on matrix factorization techniques].
    Kong W; Wang J; Mou X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Jun; 31(3):662-70. PubMed ID: 25219254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.
    Gaujoux R; Seoighe C
    Infect Genet Evol; 2012 Jul; 12(5):913-21. PubMed ID: 21930246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biclustering of gene expression data by Non-smooth Non-negative Matrix Factorization.
    Carmona-Saez P; Pascual-Marqui RD; Tirado F; Carazo JM; Pascual-Montano A
    BMC Bioinformatics; 2006 Feb; 7():78. PubMed ID: 16503973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis.
    Liu W; Yuan K; Ye D
    J Biomed Inform; 2008 Aug; 41(4):602-6. PubMed ID: 18234564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biclustering of microarray data with MOSPO based on crowding distance.
    Liu J; Li Z; Hu X; Chen Y
    BMC Bioinformatics; 2009 Apr; 10 Suppl 4(Suppl 4):S9. PubMed ID: 19426457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-negative matrix factorization of gene expression profiles: a plug-in for BRB-ArrayTools.
    Qi Q; Zhao Y; Li M; Simon R
    Bioinformatics; 2009 Feb; 25(4):545-7. PubMed ID: 19131367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer molecular pattern discovery by subspace consensus kernel classification.
    Han X
    Comput Syst Bioinformatics Conf; 2007; 6():55-65. PubMed ID: 17951812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor classification based on non-negative matrix factorization using gene expression data.
    Zheng CH; Ng TY; Zhang L; Shiu CK; Wang HQ
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):86-93. PubMed ID: 21742573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal joint sparse NMF for microarray data analysis.
    Esposito F; Gillis N; Del Buono N
    J Math Biol; 2019 Jul; 79(1):223-247. PubMed ID: 31004215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-guided multi-scale independent component analysis for biomarker identification.
    Chen L; Xuan J; Wang C; Shih IeM; Wang Y; Zhang Z; Hoffman E; Clarke R
    BMC Bioinformatics; 2008 Oct; 9():416. PubMed ID: 18837990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic regulatory network reconstruction for Alzheimer's disease based on matrix decomposition techniques.
    Kong W; Mou X; Zhi X; Zhang X; Yang Y
    Comput Math Methods Med; 2014; 2014():891761. PubMed ID: 25024739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology.
    Devarajan K
    PLoS Comput Biol; 2008 Jul; 4(7):e1000029. PubMed ID: 18654623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.
    Jia Y; Nie K; Li J; Liang X; Zhang X
    Mol Med Rep; 2016 Nov; 14(5):4844-4848. PubMed ID: 27748870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining gene expression data by interpreting principal components.
    Roden JC; King BW; Trout D; Mortazavi A; Wold BJ; Hart CE
    BMC Bioinformatics; 2006 Apr; 7():194. PubMed ID: 16600052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing endophenotypes of complex diseases using non-negative matrix factorization and adjusted rand index.
    Wang HM; Hsiao CL; Hsieh AR; Lin YC; Fann CS
    PLoS One; 2012; 7(7):e40996. PubMed ID: 22815890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to extract marker genes from microarray data sets.
    Schachtner R; Lutter D; Theis FJ; Lang EW; Schmitz G; Tomé AM; Vilda PG
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4215-8. PubMed ID: 18002932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes.
    Chou JW; Zhou T; Kaufmann WK; Paules RS; Bushel PR
    BMC Bioinformatics; 2007 Nov; 8():427. PubMed ID: 17980031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.