These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21989157)

  • 1. Liver: Nɛ-(carboxymethyl)lysine is involved in hepatic steatosis.
    Greenhill C
    Nat Rev Gastroenterol Hepatol; 2011 Oct; 8(11):599. PubMed ID: 21989157
    [No Abstract]   [Full Text] [Related]  

  • 2. Endogenous formation of Nε-(carboxymethyl)lysine is increased in fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis.
    Gaens KH; Niessen PM; Rensen SS; Buurman WA; Greve JW; Driessen A; Wolfs MG; Hofker MH; Bloemen JG; Dejong CH; Stehouwer CD; Schalkwijk CG
    J Hepatol; 2012 Mar; 56(3):647-55. PubMed ID: 21907687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylglyoxal-hydroimidazolones (MG-Hs) instead of Nɛ-(carboxymethyl)-l-lysine (CML) is the major advanced glycation end-product during drying process in black tea.
    Zhang W; Zhang B; Ye Y; Zhu H
    Food Chem; 2020 Dec; 333():127499. PubMed ID: 32673957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nɛ-homocysteinyl-lysine isopeptide is associated with progression of peripheral artery disease in patients treated with folic acid.
    Mazur P; Kozynacka A; Durajski L; Głowacki R; Pfitzner R; Fijorek K; Sadowski J; Undas A
    Eur J Vasc Endovasc Surg; 2012 May; 43(5):588-93. PubMed ID: 22436266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum to "Methylglyoxal-hydroimidazolones (MG-Hs) instead of Nɛ-(carboxymethyl)-l-lysine (CML) is the major advanced glycation end-product during drying process in black tea" [Food Chem. 333 (2020) 127499].
    Zhang W; Zhang B; Ye Y; Zhu H
    Food Chem; 2021 Jul; 350():129326. PubMed ID: 33596488
    [No Abstract]   [Full Text] [Related]  

  • 6. L-Lysine Attenuates Hepatic Steatosis in Senescence-Accelerated Mouse Prone 8 Mice.
    Sato T; Muramatsu N; Ito Y; Yamamoto Y; Nagasawa T
    J Nutr Sci Vitaminol (Tokyo); 2018; 64(3):192-199. PubMed ID: 29962430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.
    Cui N; Qian J; Xu W; Xu M; Zhao N; Liu T; Wang H
    Carbohydr Polym; 2016 Jan; 136():1017-26. PubMed ID: 26572442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of pro-prodrugs L-lysine based for 5-aminosalicylic acid and 6-mercaptopurine colon specific release.
    Trombino S; Cassano R; Cilea A; Ferrarelli T; Muzzalupo R; Picci N
    Int J Pharm; 2011 Nov; 420(2):290-6. PubMed ID: 21925255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of dimerumic acid on hepatic fibrosis caused from carboxymethyl-lysine (CML) by attenuating oxidative stress depends on Nrf2 activation in hepatic stellate cells (HSCs).
    Lee BH; Hsu WH; Hsu YW; Pan TM
    Food Chem Toxicol; 2013 Dec; 62():413-9. PubMed ID: 24036144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K9 demethylase JMJD2B induces hepatic steatosis through upregulation of PPARγ2.
    Kim JH; Jung DY; Nagappan A; Jung MH
    Sci Rep; 2018 Sep; 8(1):13734. PubMed ID: 30214048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between hepatic steatosis and hepatic expression of genes involved in innate immunity in patients with chronic hepatitis C.
    Toyoda H; Kumada T; Kiriyama S; Tanikawa M; Hisanaga Y; Kanamori A; Tada T; Kitabatake S; Murakami Y
    Cytokine; 2013 Aug; 63(2):145-50. PubMed ID: 23673288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased accumulation of protein-bound N(ε)-(carboxymethyl)lysine in tissues of healthy rats after chronic oral N(ε)-(carboxymethyl)lysine.
    Li M; Zeng M; He Z; Zheng Z; Qin F; Tao G; Zhang S; Chen J
    J Agric Food Chem; 2015 Feb; 63(5):1658-63. PubMed ID: 25611617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.
    Mwangi SM; Peng S; Nezami BG; Thorn N; Farris AB; Jain S; Laroui H; Merlin D; Anania F; Srinivasan S
    Am J Physiol Gastrointest Liver Physiol; 2016 Jan; 310(2):G103-16. PubMed ID: 26564715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Up-regulation of hepatic fatty acid transporters and inhibition/down-regulation of hepatic OCTN2 contribute to olanzapine-induced liver steatosis.
    Jiang T; Zhang Y; Bai M; Li P; Wang W; Chen M; Ma Z; Zeng S; Zhou H; Jiang H
    Toxicol Lett; 2019 Nov; 316():183-193. PubMed ID: 31437515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.
    Wu YL; Peng XE; Zhu YB; Yan XL; Chen WN; Lin X
    J Virol; 2016 Feb; 90(4):1729-40. PubMed ID: 26637457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.
    Bagley BD; Chang SC; Ehresman DJ; Eveland A; Zitzow JD; Parker GA; Peters JM; Wallace KB; Butenhoff JL
    Toxicol Sci; 2017 Dec; 160(2):284-298. PubMed ID: 28973659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levocetirizine ameliorates high fructose diet-induced insulin resistance, vascular dysfunction and hepatic steatosis in rats.
    Shawky NM; Shehatou GS; Abdel Rahim M; Suddek GM; Gameil NM
    Eur J Pharmacol; 2014 Oct; 740():353-63. PubMed ID: 25064340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Roles of the Histone Methyltransferase MLL4/KMT2D in Murine Hepatic Steatosis Directed by ABL1 and PPARγ2.
    Kim DH; Kim J; Kwon JS; Sandhu J; Tontonoz P; Lee SK; Lee S; Lee JW
    Cell Rep; 2016 Nov; 17(6):1671-1682. PubMed ID: 27806304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DFT study of the carboxymethyl-phosphatidylethanolamine formation from glyoxal and phosphatidylethanolamine surface. Comparison with the formation of N(ε)-(carboxymethyl)lysine from glyoxal and L-lysine.
    Solís-Calero C; Ortega-Castro J; Hernández-Laguna A; Frau J; Muñoz F
    Phys Chem Chem Phys; 2015 Mar; 17(12):8210-22. PubMed ID: 25732867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of protein function by reversible Nɛ-lysine acetylation in bacteria.
    Thao S; Escalante-Semerena JC
    Curr Opin Microbiol; 2011 Apr; 14(2):200-4. PubMed ID: 21239213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.