These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21989313)
1. Detection, quantification, and microlocalisation of targets of pesticides using microchannel plate autoradiographic imagers. Tarhoni MH; Vigneswara V; Smith M; Anderson S; Wigmore P; Lees JE; Ray DE; Carter WG Molecules; 2011 Oct; 16(10):8535-51. PubMed ID: 21989313 [TBL] [Abstract][Full Text] [Related]
2. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides. Tarhoni MH; Lister T; Ray DE; Carter WG Biomarkers; 2008 Jun; 13(4):343-63. PubMed ID: 18484351 [TBL] [Abstract][Full Text] [Related]
3. Analytical approaches to investigate protein-pesticide adducts. Carter WG; Tarhoni MH; Ray DE J Chromatogr B Analyt Technol Biomed Life Sci; 2010 May; 878(17-18):1312-9. PubMed ID: 19879817 [TBL] [Abstract][Full Text] [Related]
4. Differential protein adduction by seven organophosphorus pesticides in both brain and thymus. Carter WG; Tarhoni M; Rathbone AJ; Ray DE Hum Exp Toxicol; 2007 Apr; 26(4):347-53. PubMed ID: 17615116 [TBL] [Abstract][Full Text] [Related]
5. Bioactivation and detoxification of organophosphorus pesticides in freshwater planarians shares similarities with humans. Ireland D; Rabeler C; Gong T; Collins ES Arch Toxicol; 2022 Dec; 96(12):3233-3243. PubMed ID: 36173421 [TBL] [Abstract][Full Text] [Related]
6. Organophosphorus Pesticides Promote Protein Cross-Linking. Schopfer LM; Onder S; Lockridge O Chem Res Toxicol; 2022 Sep; 35(9):1570-1578. PubMed ID: 36048166 [TBL] [Abstract][Full Text] [Related]
7. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation. Hagstrom D; Hirokawa H; Zhang L; Radic Z; Taylor P; Collins ES Arch Toxicol; 2017 Aug; 91(8):2837-2847. PubMed ID: 27990564 [TBL] [Abstract][Full Text] [Related]
8. Novel protein targets for organophosphorus compounds. Richards P; Johnson M; Ray D; Walker C Chem Biol Interact; 1999 May; 119-120():503-11. PubMed ID: 10421489 [TBL] [Abstract][Full Text] [Related]
9. Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran. Duysen EG; Cashman JR; Schopfer LM; Nachon F; Masson P; Lockridge O Chem Biol Interact; 2012 Feb; 195(3):189-98. PubMed ID: 22209767 [TBL] [Abstract][Full Text] [Related]
10. Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry. Peeples ES; Schopfer LM; Duysen EG; Spaulding R; Voelker T; Thompson CM; Lockridge O Toxicol Sci; 2005 Feb; 83(2):303-12. PubMed ID: 15525694 [TBL] [Abstract][Full Text] [Related]
11. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Nigg HN; Knaak JB Rev Environ Contam Toxicol; 2000; 163():29-111. PubMed ID: 10771584 [TBL] [Abstract][Full Text] [Related]
12. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives. Fujioka K; Casida JE Chem Res Toxicol; 2007 Aug; 20(8):1211-7. PubMed ID: 17645302 [TBL] [Abstract][Full Text] [Related]
13. Complementary biological and computational approaches identify distinct mechanisms of chlorpyrifos versus chlorpyrifos-oxon-induced dopaminergic neurotoxicity. Sammi SR; Syeda T; Conrow KD; Leung MCK; Cannon JR Toxicol Sci; 2023 Jan; 191(1):163-178. PubMed ID: 36269219 [TBL] [Abstract][Full Text] [Related]
14. Life without acetylcholinesterase: the implications of cholinesterase inhibitor toxicity in AChE-knockout mice. Lockridge O; Duysen EG; Voelker T; Thompson CM; Schopfer LM Environ Toxicol Pharmacol; 2005 May; 19(3):463-9. PubMed ID: 21783513 [TBL] [Abstract][Full Text] [Related]
15. Near-infrared fluorescent probe for ultrasensitive detection of organophosphorus pesticides and visualization of their interaction with butyrylcholinesterase in living cells. Zhang Z; Li J; Yang B; Ma M; Ding X; Shi H; Ma P; Song D; Zhang Z Talanta; 2024 Nov; 279():126587. PubMed ID: 39032455 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Chanda SM; Mortensen SR; Moser VC; Padilla S Fundam Appl Toxicol; 1997 Aug; 38(2):148-57. PubMed ID: 9299188 [TBL] [Abstract][Full Text] [Related]
17. Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: chlorpyrifos, chlorpyrifos oxon, and diazinon. Jameson RR; Seidler FJ; Slotkin TA Environ Health Perspect; 2007 Jan; 115(1):65-70. PubMed ID: 17366821 [TBL] [Abstract][Full Text] [Related]
18. Esterase detoxication of acetylcholinesterase inhibitors using human liver samples in vitro. Moser VC; Padilla S Toxicology; 2016 Apr; 353-354():11-20. PubMed ID: 27132127 [TBL] [Abstract][Full Text] [Related]
19. The developmental neurotoxicity of organophosphorus insecticides: a direct role for the oxon metabolites. Flaskos J Toxicol Lett; 2012 Feb; 209(1):86-93. PubMed ID: 22155227 [TBL] [Abstract][Full Text] [Related]
20. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents. John H; Breyer F; Thumfart JO; Höchstetter H; Thiermann H Anal Bioanal Chem; 2010 Nov; 398(6):2677-91. PubMed ID: 20730528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]