These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 21989389)

  • 1. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy.
    Rama Rao KV; Norenberg MD
    Neurochem Int; 2012 Jun; 60(7):697-706. PubMed ID: 21989389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia.
    Rao KV; Norenberg MD
    Metab Brain Dis; 2001 Jun; 16(1-2):67-78. PubMed ID: 11726090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes.
    Rama Rao KV; Jayakumar AR; Norenberg MD
    Neurochem Int; 2005 Jul; 47(1-2):31-8. PubMed ID: 15908047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated cerebral lactate: Implications in the pathogenesis of hepatic encephalopathy.
    Bosoi CR; Rose CF
    Metab Brain Dis; 2014 Dec; 29(4):919-25. PubMed ID: 24916505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes.
    Bai G; Rama Rao KV; Murthy CR; Panickar KS; Jayakumar AR; Norenberg MD
    J Neurosci Res; 2001 Dec; 66(5):981-91. PubMed ID: 11746427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral effects of ammonia in liver disease: current hypotheses.
    Ott P; Vilstrup H
    Metab Brain Dis; 2014 Dec; 29(4):901-11. PubMed ID: 24488230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase brain lactate in hepatic encephalopathy: cause or consequence?
    Rose CF
    Neurochem Int; 2010 Nov; 57(4):389-94. PubMed ID: 20600436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission.
    Norenberg MD; Huo Z; Neary JT; Roig-Cantesano A
    Glia; 1997 Sep; 21(1):124-33. PubMed ID: 9298855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes.
    Alvarez VM; Rama Rao KV; Brahmbhatt M; Norenberg MD
    J Neurosci Res; 2011 Dec; 89(12):2028-40. PubMed ID: 21748779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy.
    Dhanda S; Sunkaria A; Halder A; Sandhir R
    Metab Brain Dis; 2018 Feb; 33(1):209-223. PubMed ID: 29138968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia.
    Bak LK; Iversen P; Sørensen M; Keiding S; Vilstrup H; Ott P; Waagepetersen HS; Schousboe A
    Metab Brain Dis; 2009 Mar; 24(1):135-45. PubMed ID: 19067142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for oxidative/nitrosative stress in the pathogenesis of hepatic encephalopathy.
    Bemeur C; Desjardins P; Butterworth RF
    Metab Brain Dis; 2010 Mar; 25(1):3-9. PubMed ID: 20195724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia.
    Jamshidzadeh A; Heidari R; Abasvali M; Zarei M; Ommati MM; Abdoli N; Khodaei F; Yeganeh Y; Jafari F; Zarei A; Latifpour Z; Mardani E; Azarpira N; Asadi B; Najibi A
    Biomed Pharmacother; 2017 Feb; 86():514-520. PubMed ID: 28024286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anaplerotic flux and ammonia detoxification in hepatic encephalopathy.
    Zwingmann C
    Metab Brain Dis; 2007 Dec; 22(3-4):235-49. PubMed ID: 17823857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine in the pathogenesis of acute hepatic encephalopathy.
    Rama Rao KV; Jayakumar AR; Norenberg MD
    Neurochem Int; 2012 Sep; 61(4):575-80. PubMed ID: 22285152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pannexin1 as a novel cerebral target in pathogenesis of hepatic encephalopathy.
    Mondal P; Trigun SK
    Metab Brain Dis; 2014 Dec; 29(4):1007-15. PubMed ID: 24807590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy.
    Zwingmann C; Butterworth R
    Neurochem Int; 2005 Jul; 47(1-2):19-30. PubMed ID: 15916833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergetic dysfunction in a zebrafish model of acute hyperammonemic decompensation.
    Zielonka M; Probst J; Carl M; Hoffmann GF; Kölker S; Okun JG
    Exp Neurol; 2019 Apr; 314():91-99. PubMed ID: 30653968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia neurotoxicity: role of the mitochondrial permeability transition.
    Rama Rao KV; Jayakumar AR; Norenberg DM
    Metab Brain Dis; 2003 Jun; 18(2):113-27. PubMed ID: 12822830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia neurotoxicity and the mitochondrial permeability transition.
    Norenberg MD; Rama Rao KV; Jayakumar AR
    J Bioenerg Biomembr; 2004 Aug; 36(4):303-7. PubMed ID: 15377862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.