These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21989394)

  • 1. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites.
    Suárez CA; Blancato VS; Poncet S; Deutscher J; Magni C
    BMC Microbiol; 2011 Oct; 11():227. PubMed ID: 21989394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO.
    Blancato VS; Repizo GD; Suárez CA; Magni C
    J Bacteriol; 2008 Nov; 190(22):7419-30. PubMed ID: 18805984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enterococcus faecalis Maltodextrin Gene Regulation by Combined Action of Maltose Gene Regulator MalR and Pleiotropic Regulator CcpA.
    Grand M; Riboulet-Bisson E; Deutscher J; Hartke A; Sauvageot N
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enterococcus faecalis MalR acts as a repressor of the maltose operons and additionally mediates their catabolite repression via direct interaction with seryl-phosphorylated-HPr.
    Grand M; Blancato VS; Espariz M; Deutscher J; Pikis A; Hartke A; Magni C; Sauvageot N
    Mol Microbiol; 2020 Feb; 113(2):464-477. PubMed ID: 31755602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.
    Suárez C; Espariz M; Blancato VS; Magni C
    PLoS One; 2013; 8(10):e76170. PubMed ID: 24155893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis.
    Mortera P; Espariz M; Suárez C; Repizo G; Deutscher J; Alarcón S; Blancato V; Magni C
    Appl Environ Microbiol; 2012 Mar; 78(6):1936-45. PubMed ID: 22247139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals.
    Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W
    J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanolamine Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite Repression.
    Kaval KG; Gebbie M; Goodson JR; Cruz MR; Winkler WC; Garsin DA
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579.
    van der Voort M; Kuipers OP; Buist G; de Vos WM; Abee T
    BMC Microbiol; 2008 Apr; 8():62. PubMed ID: 18416820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y; Miwa Y; Galinier A; Deutscher J
    Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system.
    Jankovic I; Egeter O; Brückner R
    J Bacteriol; 2001 Jan; 183(2):580-6. PubMed ID: 11133951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
    Puri-Taneja A; Paul S; Chen Y; Hulett FM
    J Bacteriol; 2006 Feb; 188(4):1266-78. PubMed ID: 16452408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments.
    Fleming E; Lazinski DW; Camilli A
    Mol Microbiol; 2015 Jul; 97(2):360-80. PubMed ID: 25898857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.