BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2198945)

  • 1. Reactive sulfhydryl groups in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.
    Cardemil E; Encinas MV; Jabalquinto AM
    Biochim Biophys Acta; 1990 Aug; 1040(1):71-6. PubMed ID: 2198945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosoma cruzi phospho enol pyruvate carboxykinase (ATP-dependent): transition metal ion requirement for activity and sulfhydryl group reactivity.
    Jurado LA; Machín I; Urbina JA
    Biochim Biophys Acta; 1996 Jan; 1292(1):188-96. PubMed ID: 8547343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: physicochemical characteristics of the nucleotide binding site, as deduced from fluorescent spectroscopy measurements.
    Encinas MV; Quiñones V; Cardemil E
    Biochemistry; 1990 May; 29(19):4548-53. PubMed ID: 2196937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity labeling of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with the 2',3'-dialdehyde derivative of ATP.
    Saavedra C; Araneda S; Cardemil E
    Arch Biochem Biophys; 1988 Nov; 267(1):38-45. PubMed ID: 3058040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phospho enol pyruvate carboxykinases.
    Rojas MC; Encinas MV; Kemp RG; Latshaw SP; Cardemil E
    Biochim Biophys Acta; 1993 Jul; 1164(2):143-51. PubMed ID: 8329445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: revised amino acid sequence, site-directed mutagenesis, and microenvironment characteristics of cysteines 365 and 458.
    Krautwurst H; Encinas MV; Marcus F; Latshaw SP; Kemp RG; Frey PA; Cardemil E
    Biochemistry; 1995 May; 34(19):6382-8. PubMed ID: 7756267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of chicken liver mevalonate 5-diphosphate decarboxylase by sulfhydryl-directed reagents: evidence of a functional dithiol.
    Alvear M; Jabalquinto AM; Cardemil E
    Biochim Biophys Acta; 1989 Jan; 994(1):7-11. PubMed ID: 2909257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vicinal dithiol containing an essential cysteine in phosphoenolpyruvate carboxykinase (guanosine triphosphate) from cytosol of rat liver.
    Carlson GM; Colombo G; Lardy HA
    Biochemistry; 1978 Dec; 17(25):5329-38. PubMed ID: 728403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two conformationally vicinal thiols at the active site of Leishmania donovani adenosine kinase.
    Bagui TK; Ghosh M; Datta AK
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):439-45. PubMed ID: 8687385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of wild-type C365S, and C458S saccharomyces cerevisiae phosphoenolpyruvate carboxykinases with fluorescent iodoacetamide derivatives.
    Krautwurst H; Berti M; Encinas MV; Frey PA
    Arch Biochem Biophys; 1996 Mar; 327(1):123-30. PubMed ID: 8615682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of cysteinyl, arginyl, and lysyl residues of Escherichia coli phosphoenolpyruvate carboxykinase against group-specific chemical reagents.
    Bazaes S; Silva R; Goldie H; Cardemil E; Jabalquinto AM
    J Protein Chem; 1993 Oct; 12(5):571-7. PubMed ID: 8141999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation and modification of phosphoenolpyruvate carboxykinase differentially labeled with bromopyruvate.
    Silverstein R; Lin CC; Fanning KW; Hung BT
    Biochim Biophys Acta; 1980 Aug; 614(2):534-44. PubMed ID: 7407201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoenolpyruvate carboxykinase and gluconeogenesis in cotyledons of Cucurbita pepo.
    Leegood RC; ap Rees T
    Biochim Biophys Acta; 1978 May; 524(1):207-18. PubMed ID: 656445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent labeling of the nucleotide site in cytosolic rat liver phosphoenolpyruvate carboxykinase.
    Rojas MC; Encinas MV; Cardemil E
    Arch Biochem Biophys; 1991 May; 286(2):441-7. PubMed ID: 1897968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phosphoenolpyruvate carboxykinase of Trypanosoma (Schizotrypanum) cruzi epimastigotes: molecular, kinetic, and regulatory properties.
    Urbina JA
    Arch Biochem Biophys; 1987 Oct; 258(1):186-95. PubMed ID: 3310897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine 288: an essential hyperreactive thiol of cytosolic phosphoenolpyruvate carboxykinase (GTP).
    Lewis CT; Seyer JM; Carlson GM
    J Biol Chem; 1989 Jan; 264(1):27-33. PubMed ID: 2909519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae.
    Müller M; Müller H; Holzer H
    J Biol Chem; 1981 Jan; 256(2):723-7. PubMed ID: 7005222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the proteolytic activity firmly attached to yeast phoshoenolpyruvate carboxykinase.
    Beck I; Müller M; Holzer H
    Biochim Biophys Acta; 1982 Jul; 705(2):163-6. PubMed ID: 7052135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.