BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21989563)

  • 1. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production.
    Kutyna DR; Varela C; Stanley GA; Borneman AR; Henschke PA; Chambers PJ
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1175-84. PubMed ID: 21989563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.
    Schuller D; Casal M
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):292-304. PubMed ID: 15856224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.
    Chen S; Xu Y
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.
    Pretorius IS
    Yeast; 2000 Jun; 16(8):675-729. PubMed ID: 10861899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of sulfites, temperature, and agitation time on production of glycerol in grape juice by Saccharomyces cerevisiae.
    Gardner N; Rodrigue N; Champagne CP
    Appl Environ Microbiol; 1993 Jul; 59(7):2022-8. PubMed ID: 8357243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of self-cloning, indigenous wine strains of Saccharomyces cerevisiae with enhanced glycerol and glutathione production.
    Hao RY; Liu YL; Wang ZY; Zhang BR
    Biotechnol Lett; 2012 Sep; 34(9):1711-7. PubMed ID: 22648686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation.
    Berovic M; Herga M
    Biotechnol Lett; 2007 Jun; 29(6):891-4. PubMed ID: 17387435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution.
    Cadière A; Aguera E; Caillé S; Ortiz-Julien A; Dequin S
    Food Microbiol; 2012 Dec; 32(2):332-7. PubMed ID: 22986198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine.
    Tosi E; Azzolini M; Guzzo F; Zapparoli G
    J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene.
    Eglinton JM; Heinrich AJ; Pollnitz AP; Langridge P; Henschke PA; de Barros Lopes M
    Yeast; 2002 Mar; 19(4):295-301. PubMed ID: 11870853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard.
    Cappello MS; Bleve G; Grieco F; Dellaglio F; Zacheo G
    J Appl Microbiol; 2004; 97(6):1274-80. PubMed ID: 15546418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.
    Tilloy V; Ortiz-Julien A; Dequin S
    Appl Environ Microbiol; 2014 Apr; 80(8):2623-32. PubMed ID: 24532067
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolved Saccharomyces cerevisiae wine strains with enhanced glutathione production obtained by an evolution-based strategy.
    Mezzetti F; De Vero L; Giudici P
    FEMS Yeast Res; 2014 Sep; 14(6):977-87. PubMed ID: 25041878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains.
    Marullo P; Bely M; Masneuf-Pomarede I; Aigle M; Dubourdieu D
    FEMS Yeast Res; 2004 May; 4(7):711-9. PubMed ID: 15093774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the selection process of yeast starter cultures by preselecting strains dominating spontaneous fermentations.
    Pulvirenti A; Rainieri S; Boveri S; Giudici P
    Can J Microbiol; 2009 Mar; 55(3):326-32. PubMed ID: 19370076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress.
    Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G
    Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
    Cordente AG; Heinrich A; Pretorius IS; Swiegers JH
    FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.