These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A computer-based simulator for intravascular photoacoustic images. Zheng S; Yuan Y; Duoduo H Comput Biol Med; 2017 Feb; 81():176-187. PubMed ID: 28088080 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging. Zheng S; Lan Z Comput Biol Med; 2018 Jun; 97():37-49. PubMed ID: 29689466 [TBL] [Abstract][Full Text] [Related]
7. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography. Pramanik M J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):621-7. PubMed ID: 24690661 [TBL] [Abstract][Full Text] [Related]
8. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. Li Y; Gong X; Liu C; Lin R; Hau W; Bai X; Song L J Biomed Opt; 2015 Jun; 20(6):065006. PubMed ID: 26098356 [TBL] [Abstract][Full Text] [Related]
9. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Hui J; Cao Y; Zhang Y; Kole A; Wang P; Yu G; Eakins G; Sturek M; Chen W; Cheng JX Sci Rep; 2017 May; 7(1):1417. PubMed ID: 28469205 [TBL] [Abstract][Full Text] [Related]
10. A Constrained Variable Projection Reconstruction Method for Photoacoustic Computed Tomography Without Accurate Knowledge of Transducer Responses. Sheng Q; Wang K; Matthews TP; Xia J; Zhu L; Wang LV; Anastasio MA IEEE Trans Med Imaging; 2015 Dec; 34(12):2443-58. PubMed ID: 26641726 [TBL] [Abstract][Full Text] [Related]
11. Sparsity-based photoacoustic image reconstruction with a linear array transducer and direct measurement of the forward model. Shang R; Archibald R; Gelb A; Luke GP J Biomed Opt; 2018 Dec; 24(3):1-9. PubMed ID: 30550047 [TBL] [Abstract][Full Text] [Related]
12. Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction. Paltauf G; Nuster R J Biomed Opt; 2014 Feb; 19(2):026014. PubMed ID: 24566958 [TBL] [Abstract][Full Text] [Related]
13. An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging. Wu X; Sanders JL; Zhang X; Yamaner FY; Oralkan O IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):45-56. PubMed ID: 30442605 [TBL] [Abstract][Full Text] [Related]
15. Deblurring algorithms accounting for the finite detector size in photoacoustic tomography. Roitner H; Haltmeier M; Nuster R; O'Leary DP; Berer T; Paltauf G; Grün H; Burgholzer P J Biomed Opt; 2014 May; 19(5):056011. PubMed ID: 24853146 [TBL] [Abstract][Full Text] [Related]
16. Image reconstruction for endoscopic photoacoustic tomography including effects of detector responses. Sun Z; Sun H Exp Biol Med (Maywood); 2022 Jun; 247(11):881-897. PubMed ID: 35232296 [TBL] [Abstract][Full Text] [Related]
17. Impact of device geometry on the imaging characteristics of an intravascular photoacoustic catheter. Wu M; Jansen K; Springeling G; van der Steen AF; van Soest G Appl Opt; 2014 Dec; 53(34):8131-9. PubMed ID: 25607973 [TBL] [Abstract][Full Text] [Related]
18. Intravascular photoacoustic imaging at 35 and 80 MHz. Li X; Wei W; Zhou Q; Shung KK; Chen Z J Biomed Opt; 2012 Oct; 17(10):106005. PubMed ID: 23224004 [TBL] [Abstract][Full Text] [Related]
19. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system. Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362 [TBL] [Abstract][Full Text] [Related]
20. Image reconstruction with the Heaviside equation in photoacoustic tomography accounting for dispersive acoustic media. Moock VM; Gutiérrez-Reyes EA; García-Segundo C J Biomed Opt; 2018 Jul; 23(7):1-12. PubMed ID: 30027712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]