These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21989876)

  • 61. Micromachined bulk PZT tissue contrast sensor for fine needle aspiration biopsy.
    Li T; Gianchandani RY; Gianchandani YB
    Lab Chip; 2007 Feb; 7(2):179-85. PubMed ID: 17268619
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A One-Sided Acoustic Trap for Cell Immobilization Using 30-MHz Array Transducer.
    Lim HG; Kim HH; Yoon C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):167-172. PubMed ID: 31514129
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Micro-stereolithography as a transducer design method.
    Ho KS; Bradley RJ; Billson DR; Hutchins DA
    Ultrasonics; 2008 Mar; 48(1):1-5. PubMed ID: 18045637
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.
    George J; Ebenezer DD; Bhattacharyya SK
    J Acoust Soc Am; 2010 Oct; 128(4):1712-20. PubMed ID: 20968344
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Matrix method for acoustic levitation simulation.
    Andrade MA; Perez N; Buiochi F; Adamowski J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1674-83. PubMed ID: 21859587
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simulation of piezoelectric excitation of guided waves using waveguide finite elements.
    Loveday PW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2038-45. PubMed ID: 18986900
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Acoustic particle manipulation in a 40 kHz quarter-wavelength standing wave with an air boundary.
    Trippa G; Trine S; Ventikos Y; Coussios CC
    J Acoust Soc Am; 2012 May; 131(5):3627-37. PubMed ID: 22559340
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Feedback control for noise-aided parallel micromanipulation of several particles using dielectrophoresis.
    Zemánek J; Michálek T; Hurák Z
    Electrophoresis; 2015 Jul; 36(13):1451-8. PubMed ID: 25875804
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Acoustic devices for particle and cell manipulation and sensing.
    Qiu Y; Wang H; Demore CE; Hughes DA; Glynne-Jones P; Gebhardt S; Bolhovitins A; Poltarjonoks R; Weijer K; Schönecker A; Hill M; Cochran S
    Sensors (Basel); 2014 Aug; 14(8):14806-38. PubMed ID: 25123465
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.
    Liu HC; Li Y; Chen R; Jung H; Shung KK
    Ultrasound Med Biol; 2017 Apr; 43(4):852-859. PubMed ID: 28236533
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A pi-shaped ultrasonic tweezers concept for manipulation of small particles.
    Hu J; Santoso AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1499-507. PubMed ID: 15600095
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects.
    Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ
    Lab Chip; 2020 Mar; 20(5):987-994. PubMed ID: 32010910
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of a thick film PZT foil sensor for use in structural health monitoring applications.
    Pickwell AJ; Dorey RA; Mba D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):373-9. PubMed ID: 23357911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap.
    Hwang JY; Lee C; Lam KH; Kim HH; Lee J; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):399-406. PubMed ID: 24569245
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Real-time three-dimensional optical micromanipulation of multiple particles and living cells.
    Rodrigo PJ; Daria VR; Glückstad J
    Opt Lett; 2004 Oct; 29(19):2270-2. PubMed ID: 15524377
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound.
    Oberti S; Neild A; Dual J
    J Acoust Soc Am; 2007 Feb; 121(2):778-85. PubMed ID: 17348502
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Acoustic sorting of airborne particles by a phononic crystal waveguide.
    Korozlu N; Biçer A; Sayarcan D; Adem Kaya O; Cicek A
    Ultrasonics; 2022 Aug; 124():106777. PubMed ID: 35660202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.