These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21989931)

  • 1. The X-ray crystallographic structure and specificity profile of HAD superfamily phosphohydrolase BT1666: comparison of paralogous functions in B. thetaiotaomicron.
    Lu Z; Dunaway-Mariano D; Allen KN
    Proteins; 2011 Nov; 79(11):3099-107. PubMed ID: 21989931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131.
    Lu Z; Dunaway-Mariano D; Allen KN
    Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members.
    Lu Z; Wang L; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2009 Jan; 284(2):1224-33. PubMed ID: 18986982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence of structure and function in the haloacid dehalogenase enzyme superfamily: Bacteroides thetaiotaomicron BT2127 is an inorganic pyrophosphatase.
    Huang H; Patskovsky Y; Toro R; Farelli JD; Pandya C; Almo SC; Allen KN; Dunaway-Mariano D
    Biochemistry; 2011 Oct; 50(41):8937-49. PubMed ID: 21894910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis.
    Daughtry KD; Huang H; Malashkevich V; Patskovsky Y; Liu W; Ramagopal U; Sauder JM; Burley SK; Almo SC; Dunaway-Mariano D; Allen KN
    Biochemistry; 2013 Aug; 52(32):5372-86. PubMed ID: 23848398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB).
    Wang L; Huang H; Nguyen HH; Allen KN; Mariano PS; Dunaway-Mariano D
    Biochemistry; 2010 Feb; 49(6):1072-81. PubMed ID: 20050615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state.
    Lu Z; Dunaway-Mariano D; Allen KN
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5687-92. PubMed ID: 18398008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization of Liganded Phosphatases in the HAD Superfamily.
    Harvey CM; O'Toole KH; Allen KN
    Methods Enzymol; 2018; 607():157-184. PubMed ID: 30149857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel structurally characterized haloacid dehalogenase superfamily phosphatase from Thermococcus thioreducens with diverse substrate specificity.
    Havlickova P; Brinsa V; Brynda J; Pachl P; Prudnikova T; Mesters JR; Kascakova B; Kuty M; Pusey ML; Ng JD; Rezacova P; Kuta Smatanova I
    Acta Crystallogr D Struct Biol; 2019 Aug; 75(Pt 8):743-752. PubMed ID: 31373573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Panoramic view of a superfamily of phosphatases through substrate profiling.
    Huang H; Pandya C; Liu C; Al-Obaidi NF; Wang M; Zheng L; Toews Keating S; Aono M; Love JD; Evans B; Seidel RD; Hillerich BS; Garforth SJ; Almo SC; Mariano PS; Dunaway-Mariano D; Allen KN; Farelli JD
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):E1974-83. PubMed ID: 25848029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronophin dimerization is required for proper positioning of its substrate specificity loop.
    Kestler C; Knobloch G; Tessmer I; Jeanclos E; Schindelin H; Gohla A
    J Biol Chem; 2014 Jan; 289(5):3094-103. PubMed ID: 24338687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase.
    Biswas T; Yi L; Aggarwal P; Wu J; Rubin JR; Stuckey JA; Woodard RW; Tsodikov OV
    J Biol Chem; 2009 Oct; 284(44):30594-603. PubMed ID: 19726684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.
    Kuznetsova E; Nocek B; Brown G; Makarova KS; Flick R; Wolf YI; Khusnutdinova A; Evdokimova E; Jin K; Tan K; Hanson AD; Hasnain G; Zallot R; de Crécy-Lagard V; Babu M; Savchenko A; Joachimiak A; Edwards AM; Koonin EV; Yakunin AF
    J Biol Chem; 2015 Jul; 290(30):18678-98. PubMed ID: 26071590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily.
    Tremblay LW; Dunaway-Mariano D; Allen KN
    Biochemistry; 2006 Jan; 45(4):1183-93. PubMed ID: 16430214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase.
    Park KH; Kim MG; Ahn HJ; Lee DH; Kim JH; Kim YW; Woo EJ
    Biochim Biophys Acta; 2013 Aug; 1834(8):1510-9. PubMed ID: 23665536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for substrate binding to human pyridoxal 5'-phosphate phosphatase/chronophin by a conformational change.
    Cho HJ; Lee HJ; Cho HY; Park JW; Lee DS; Lee HS; Kwon OS; Kang BS
    Int J Biol Macromol; 2019 Jun; 131():912-924. PubMed ID: 30914363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the substrate specificities of human PHOSPHO1 and PHOSPHO2.
    Roberts SJ; Stewart AJ; Schmid R; Blindauer CA; Bond SR; Sadler PJ; Farquharson C
    Biochim Biophys Acta; 2005 Aug; 1752(1):73-82. PubMed ID: 16054448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase.
    Fushinobu S; Nishimasu H; Hattori D; Song HJ; Wakagi T
    Nature; 2011 Oct; 478(7370):538-41. PubMed ID: 21983966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha.
    Chang CM; Klema VJ; Johnson BJ; Mure M; Klinman JP; Wilmot CM
    Biochemistry; 2010 Mar; 49(11):2540-50. PubMed ID: 20155950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.