These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21990162)
1. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling. Meijer HG; Krupa M; Cagnan H; Lourens MA; Heida T; Martens HC; Bour LJ; van Gils SA J Neural Eng; 2011 Dec; 8(6):066005. PubMed ID: 21990162 [TBL] [Abstract][Full Text] [Related]
2. Frequency-selectivity of a thalamocortical relay neuron during Parkinson's disease and deep brain stimulation: a computational study. Cagnan H; Meijer HG; van Gils SA; Krupa M; Heida T; Rudolph M; Wadman WJ; Martens HC Eur J Neurosci; 2009 Oct; 30(7):1306-17. PubMed ID: 19788577 [TBL] [Abstract][Full Text] [Related]
3. Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. Guo Y; Rubin JE; McIntyre CC; Vitek JL; Terman D J Neurophysiol; 2008 Mar; 99(3):1477-92. PubMed ID: 18171706 [TBL] [Abstract][Full Text] [Related]
4. The effects of DBS patterns on basal ganglia activity and thalamic relay : a computational study. Agarwal R; Sarma SV J Comput Neurosci; 2012 Aug; 33(1):151-67. PubMed ID: 22237601 [TBL] [Abstract][Full Text] [Related]
5. Closed-loop control of deep brain stimulation: a simulation study. Santaniello S; Fiengo G; Glielmo L; Grill WM IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):15-24. PubMed ID: 20889437 [TBL] [Abstract][Full Text] [Related]
6. The pedunculopontine nucleus as an additional target for deep brain stimulation. Lourens MA; Meijer HG; Heida T; Marani E; van Gils SA Neural Netw; 2011 Aug; 24(6):617-30. PubMed ID: 21458229 [TBL] [Abstract][Full Text] [Related]
7. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation. Agarwal R; Sarma SV Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1539-42. PubMed ID: 21096376 [TBL] [Abstract][Full Text] [Related]
8. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation. Shils JL; Mei LZ; Arle JE Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885 [TBL] [Abstract][Full Text] [Related]
9. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease. Gorzelic P; Schiff SJ; Sinha A J Neural Eng; 2013 Apr; 10(2):026016. PubMed ID: 23449002 [TBL] [Abstract][Full Text] [Related]
10. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Rubin JE; Terman D J Comput Neurosci; 2004; 16(3):211-35. PubMed ID: 15114047 [TBL] [Abstract][Full Text] [Related]
11. Closed-Loop Control of Tremor-Predominant Parkinsonian State Based on Parameter Estimation. Liu C; Wang J; Deng B; Wei X; Yu H; Li H; Fietkiewicz C; Loparo KA IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1109-1121. PubMed ID: 26955042 [TBL] [Abstract][Full Text] [Related]
12. Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model. Feng XJ; Greenwald B; Rabitz H; Shea-Brown E; Kosut R J Neural Eng; 2007 Jun; 4(2):L14-21. PubMed ID: 17409470 [TBL] [Abstract][Full Text] [Related]
13. Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Guo Y; Rubin JE Neural Netw; 2011 Aug; 24(6):602-16. PubMed ID: 21458952 [TBL] [Abstract][Full Text] [Related]
14. Abolition of spindle oscillations and 3-Hz absence seizurelike activity in the thalamus by using high-frequency stimulation: potential mechanism of action. Lee KH; Hitti FL; Shalinsky MH; Kim U; Leiter JC; Roberts DW J Neurosurg; 2005 Sep; 103(3):538-45. PubMed ID: 16235687 [TBL] [Abstract][Full Text] [Related]
16. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease. Chang JY; Shi LH; Luo F; Zhang WM; Woodward DJ Neurosci Biobehav Rev; 2008; 32(3):352-66. PubMed ID: 18035416 [TBL] [Abstract][Full Text] [Related]
17. New insights offered by a computational model of deep brain stimulation. Modolo J; Mosekilde E; Beuter A J Physiol Paris; 2007; 101(1-3):56-63. PubMed ID: 18042354 [TBL] [Abstract][Full Text] [Related]
18. Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson's disease. Foffani G; Ardolino G; Egidi M; Caputo E; Bossi B; Priori A Brain Res Bull; 2006 Mar; 69(2):123-30. PubMed ID: 16533660 [TBL] [Abstract][Full Text] [Related]
19. High frequency stimulation abolishes thalamic network oscillations: an electrophysiological and computational analysis. Lee KH; Hitti FL; Chang SY; Lee DC; Roberts DW; McIntyre CC; Leiter JC J Neural Eng; 2011 Aug; 8(4):046001. PubMed ID: 21623007 [TBL] [Abstract][Full Text] [Related]
20. Closed-loop control of the thalamocortical relay neuron's Parkinsonian state based on slow variable. Liu C; Wang J; Chen YY; Deng B; Wei XL; Li HY Int J Neural Syst; 2013 Aug; 23(4):1350017. PubMed ID: 23746290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]