These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21990279)

  • 41. Kinetic and theoretical comprehension of diverse rate laws and reactivity gaps in Coriolus hirsutus laccase-catalyzed oxidation of acido and cyclometalated Ru(II) complexes.
    Kurzeev SA; Vilesov AS; Fedorova TV; Stepanova EV; Koroleva OV; Bukh C; Bjerrum MJ; Kurnikov IV; Ryabov AD
    Biochemistry; 2009 Jun; 48(21):4519-27. PubMed ID: 19351176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic modelling and simulation of laccase catalyzed degradation of reactive textile dyes.
    Cristóvão RO; Tavares AP; Ribeiro AS; Loureiro JM; Boaventura RA; Macedo EA
    Bioresour Technol; 2008 Jul; 99(11):4768-74. PubMed ID: 17986393
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of an extracellular laccase, PbLac1, purified from Polyporus brumalis.
    Nakade K; Nakagawa Y; Yano A; Sato T; Sakamoto Y
    Fungal Biol; 2010 Aug; 114(8):609-18. PubMed ID: 20943172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation of phenolic environmental pollutants by a surfactant-laccase complex in organic media.
    Michizoe J; Ichinose H; Kamiya N; Maruyama T; Goto M
    J Biosci Bioeng; 2005 Jun; 99(6):642-7. PubMed ID: 16233844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laccase-catalysed iodide oxidation in presence of methyl syringate.
    Kulys J; Bratkovskaja I; Vidziunaite R
    Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox-mediated decolorization of synthetic dyes by fungal laccases.
    Claus H; Faber G; König H
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):672-8. PubMed ID: 12226723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tannic acid interferes with the commonly used laccase-detection assay based on ABTS as the substrate.
    Terrón MC; López-Fernández M; Carbajo JM; Junca H; Téllez A; Yagüe S; Arana-Cuenca A; González T; González AE
    Biochimie; 2004 Aug; 86(8):519-22. PubMed ID: 15388228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fungal laccases - occurrence and properties.
    Baldrian P
    FEMS Microbiol Rev; 2006 Mar; 30(2):215-42. PubMed ID: 16472305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic and spectroscopic studies on the activation or inhibition effects by substituted phenolic compounds in the oxidation of aryldiamines and catechols catalyzed by Rhus vernicifera laccase.
    Casella L; Gullotti M; Monzani E; Santagostini L; Zoppellaro G; Sakurai T
    J Inorg Biochem; 2006 Dec; 100(12):2127-39. PubMed ID: 16959319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin.
    Weihua Q; Hongzhang C
    Bioresour Technol; 2008 Sep; 99(13):5480-4. PubMed ID: 18096384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laccase-catalyzed mediated oxidation of benzyl alcohol: the role of TEMPO and formation of products including benzonitrile studied by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Marjasvaara A; Torvinen M; Vainiotalo P
    J Mass Spectrom; 2004 Oct; 39(10):1139-46. PubMed ID: 15468136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation of Halogenated Polyaromatic Compounds by Laccase Catalyzed Transformation of Halophenols.
    Lu J; Shao J; Liu H; Wang Z; Huang Q
    Environ Sci Technol; 2015 Jul; 49(14):8550-7. PubMed ID: 26147794
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase.
    Vandertol-Vanier HA; Vazquez-Duhalt R; Tinoco R; Pickard MA
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):214-20. PubMed ID: 12407453
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzymatic and electrochemical oxidation of N-hydroxy compounds. Redox potential, electron-transfer kinetics, and radical stability.
    Xu F; Deussen HJ; Lopez B; Lam L; Li K
    Eur J Biochem; 2001 Aug; 268(15):4169-76. PubMed ID: 11488909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The quest for new mild and selective modifications of natural structures: laccase-catalysed oxidation of ergot alkaloids leads to unexpected stereoselective C-4 hydroxylation.
    Chirivì C; Fontana G; Monti D; Ottolina G; Riva S; Danieli B
    Chemistry; 2012 Aug; 18(33):10355-61. PubMed ID: 22777708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae.
    Chivukula M; Renganathan V
    Appl Environ Microbiol; 1995 Dec; 61(12):4374-7. PubMed ID: 16535191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds.
    Xu F; Kulys JJ; Duke K; Li K; Krikstopaitis K; Deussen HJ; Abbate E; Galinyte V; Schneider P
    Appl Environ Microbiol; 2000 May; 66(5):2052-6. PubMed ID: 10788380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity.
    Ihssen J; Schubert M; Thöny-Meyer L; Richter M
    PLoS One; 2014; 9(3):e89924. PubMed ID: 24594755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of oxidoreductase activity using a high-throughput microplate respiratory measurement.
    Hommes G; Gasser CA; Ammann EM; Corvini PF
    Anal Chem; 2013 Jan; 85(1):283-91. PubMed ID: 23181606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laccase-catalyzed oxidative polymerization of phenolic compounds.
    Sun X; Bai R; Zhang Y; Wang Q; Fan X; Yuan J; Cui L; Wang P
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1673-80. PubMed ID: 23996120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.