BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21990338)

  • 1. A 3-D liver segmentation method with parallel computing for selective internal radiation therapy.
    Goryawala M; Guillen MR; Cabrerizo M; Barreto A; Gulec S; Barot TC; Suthar RR; Bhatt RN; Mcgoron A; Adjouadi M
    IEEE Trans Inf Technol Biomed; 2012 Jan; 16(1):62-9. PubMed ID: 21990338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-interaction automatic 3D liver segmentation method using computed tomography for selective internal radiation therapy.
    Goryawala M; Gulec S; Bhatt R; McGoron AJ; Adjouadi M
    Biomed Res Int; 2014; 2014():198015. PubMed ID: 25105118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy
    Wu W; Wu S; Zhou Z; Zhang R; Zhang Y
    Biomed Res Int; 2017; 2017():5207685. PubMed ID: 29090220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Liver CT image segmentation using statistical shape model based on statistical and specific information].
    Li C; Zhang J; Feng Q
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Jan; 32(1):23-7. PubMed ID: 22365998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.
    Smeets D; Loeckx D; Stijnen B; De Dobbelaer B; Vandermeulen D; Suetens P
    Med Image Anal; 2010 Feb; 14(1):13-20. PubMed ID: 19828356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid assessment of liver volumetry by a novel automated segmentation algorithm.
    Zahel T; Wildgruber M; Ardon R; Schuster T; Rummeny EJ; Dobritz M
    J Comput Assist Tomogr; 2013; 37(4):577-82. PubMed ID: 23863535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation-based partial volume correction for volume estimation of solid lesions in CT.
    Heckel F; Meine H; Moltz JH; Kuhnigk JM; Heverhagen JT; Kiessling A; Buerke B; Hahn HK
    IEEE Trans Med Imaging; 2014 Feb; 33(2):462-80. PubMed ID: 24184707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A variational approach to liver segmentation using statistics from multiple sources.
    Zheng S; Fang B; Li L; Gao M; Wang Y
    Phys Med Biol; 2018 Jan; 63(2):025024. PubMed ID: 29265012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional semiautomatic liver segmentation method for non-contrast computed tomography based on a correlation map of locoregional histogram and probabilistic atlas.
    Yamaguchi S; Satake K; Yamaji Y; Chen YW; Tanaka HT
    Comput Biol Med; 2014 Dec; 55():79-85. PubMed ID: 25450222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model-based validation scheme for organ segmentation in CT scan volumes.
    Badakhshannoory H; Saeedi P
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2681-93. PubMed ID: 21768040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.
    Mazzara GP; Velthuizen RP; Pearlman JL; Greenberg HM; Wagner H
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):300-12. PubMed ID: 15093927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation.
    Häme Y; Pollari M
    Med Image Anal; 2012 Jan; 16(1):140-9. PubMed ID: 21742543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-automatic segmentation methods for 3-D visualization and analysis of the liver.
    Selver MA; Fischer F; Gezer S; Hillen W; Dicle O
    Stud Health Technol Inform; 2014; 205():1133-7. PubMed ID: 25160366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images.
    Lee J; Kim N; Lee H; Seo JB; Won HJ; Shin YM; Shin YG; Kim SH
    Comput Methods Programs Biomed; 2007 Oct; 88(1):26-38. PubMed ID: 17719125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning.
    Wang G; Zhang S; Xie H; Metaxas DN; Gu L
    Med Image Anal; 2015 Jan; 19(1):176-86. PubMed ID: 25461336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.
    Ji H; He J; Yang X; Deklerck R; Cornelis J
    IEEE J Biomed Health Inform; 2013 May; 17(3):690-8. PubMed ID: 24592469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size determination and response assessment of liver metastases with computed tomography--comparison of RECIST and volumetric algorithms.
    Rothe JH; Grieser C; Lehmkuhl L; Schnapauff D; Fernandez CP; Maurer MH; Mussler A; Hamm B; Denecke T; Steffen IG
    Eur J Radiol; 2013 Nov; 82(11):1831-9. PubMed ID: 22717124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D liver segmentation in preoperative CT images using a level-sets active surface method.
    Fernandez-de-Manuel L; Rubio JL; Ledesma-Carbayo MJ; Pascau J; Tellado JM; Ramon E; Desco M; Santos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3625-8. PubMed ID: 19964309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.