These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 21990607)
1. Unique FISH patterns associated with cancer progression of oral dysplasia. Poh CF; Zhu Y; Chen E; Berean KW; Wu L; Zhang L; Rosin MP J Dent Res; 2012 Jan; 91(1):52-7. PubMed ID: 21990607 [TBL] [Abstract][Full Text] [Related]
2. Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer. Taoudi Benchekroun M; Saintigny P; Thomas SM; El-Naggar AK; Papadimitrakopoulou V; Ren H; Lang W; Fan YH; Huang J; Feng L; Lee JJ; Kim ES; Hong WK; Johnson FM; Grandis JR; Mao L Cancer Prev Res (Phila); 2010 Jul; 3(7):800-9. PubMed ID: 20570883 [TBL] [Abstract][Full Text] [Related]
3. Gain of hTERC: a genetic marker of malignancy in oral potentially malignant lesions. Dorji T; Monti V; Fellegara G; Gabba S; Grazioli V; Repetti E; Marcialis C; Peluso S; Di Ruzza D; Neri F; Foschini MP Hum Pathol; 2015 Sep; 46(9):1275-81. PubMed ID: 26170010 [TBL] [Abstract][Full Text] [Related]
4. Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Tsui IF; Rosin MP; Zhang L; Ng RT; Lam WL Cancer Prev Res (Phila); 2008 Nov; 1(6):424-9. PubMed ID: 19138989 [TBL] [Abstract][Full Text] [Related]
5. Recurrent copy number alterations involving EGFR, CDKN2A, and CCND1 in oral premalignant lesions. Jäwert F; Fehr A; Öhman J; Stenman G; Kjeller G J Oral Pathol Med; 2022 Jul; 51(6):546-552. PubMed ID: 35488777 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence in situ hybridization for detecting genomic alterations of cyclin D1 and p16 in oral squamous cell carcinomas. Uzawa N; Sonoda I; Myo K; Takahashi K; Miyamoto R; Amagasa T Cancer; 2007 Nov; 110(10):2230-9. PubMed ID: 17893905 [TBL] [Abstract][Full Text] [Related]
7. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. Yang Y; Li YX; Yang X; Jiang L; Zhou ZJ; Zhu YQ BMC Cancer; 2013 Mar; 13():129. PubMed ID: 23510112 [TBL] [Abstract][Full Text] [Related]
8. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Tsui IF; Poh CF; Garnis C; Rosin MP; Zhang L; Lam WL Int J Cancer; 2009 Nov; 125(9):2219-28. PubMed ID: 19623652 [TBL] [Abstract][Full Text] [Related]
9. DNA ploidy analysis by image cytometry helps to identify oral epithelial dysplasias with a high risk of malignant progression. Torres-Rendon A; Stewart R; Craig GT; Wells M; Speight PM Oral Oncol; 2009 Jun; 45(6):468-73. PubMed ID: 18805043 [TBL] [Abstract][Full Text] [Related]
10. Methylation of p16 CpG island associated with malignant progression of oral epithelial dysplasia: a prospective cohort study. Cao J; Zhou J; Gao Y; Gu L; Meng H; Liu H; Deng D Clin Cancer Res; 2009 Aug; 15(16):5178-83. PubMed ID: 19671846 [TBL] [Abstract][Full Text] [Related]
12. Architectural and cytological features of epithelial dysplasia associated with transformation risk. Cai X; Zhang J; Zhang H; Zhou X; Zhou Z; Jing F; Luo H; Li T Oral Dis; 2024 Jul; 30(5):3028-3038. PubMed ID: 37983891 [TBL] [Abstract][Full Text] [Related]
13. Genetic Abnormalities in Oral Leukoplakia and Oral Cancer Progression. Kil TJ; Kim HS; Kim HJ; Nam W; Cha IH Asian Pac J Cancer Prev; 2016; 17(6):3001-6. PubMed ID: 27356725 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of matrix metalloproteinase-1 and -9 mRNA is associated with progression of oral dysplasia to cancer. Jordan RC; Macabeo-Ong M; Shiboski CH; Dekker N; Ginzinger DG; Wong DT; Schmidt BL Clin Cancer Res; 2004 Oct; 10(19):6460-5. PubMed ID: 15475433 [TBL] [Abstract][Full Text] [Related]
15. Phospholipase C-γ1 expression correlated with cancer progression of potentially malignant oral lesions. Ma LW; Zhou ZT; He QB; Jiang WW J Oral Pathol Med; 2013 Jan; 42(1):47-52. PubMed ID: 22671975 [TBL] [Abstract][Full Text] [Related]
16. Potential marker of oral squamous cell carcinoma aggressiveness detected by fluorescence in situ hybridization in fine-needle aspiration biopsies. Miyamoto R; Uzawa N; Nagaoka S; Nakakuki K; Hirata Y; Amagasa T Cancer; 2002 Nov; 95(10):2152-9. PubMed ID: 12412169 [TBL] [Abstract][Full Text] [Related]
17. Alterations of rb pathway components are frequent events in patients with oral epithelial dysplasia and predict clinical outcome in patients with squamous cell carcinoma. Soni S; Kaur J; Kumar A; Chakravarti N; Mathur M; Bahadur S; Shukla NK; Deo SV; Ralhan R Oncology; 2005; 68(4-6):314-25. PubMed ID: 16020958 [TBL] [Abstract][Full Text] [Related]
18. Loss of heterozygosity and immunoexpression of PTEN in oral epithelial dysplasia and squamous cell carcinoma. Chaves FN; Bezerra TMM; Moraes DC; Costa SFDS; Silva PGB; Alves APNN; Costa FWG; Bernardes VF; Pereira KMA Exp Mol Pathol; 2020 Feb; 112():104341. PubMed ID: 31730755 [TBL] [Abstract][Full Text] [Related]
19. Proliferative activity and loss of function of tumour suppressor genes as 'biomarkers' in diagnosis and prognosis of benign and preneoplastic oral lesions and oral squamous cell carcinoma. Girod SC; Pfeiffer P; Ries J; Pape HD Br J Oral Maxillofac Surg; 1998 Aug; 36(4):252-60. PubMed ID: 9762452 [TBL] [Abstract][Full Text] [Related]
20. Factors predicting malignant transformation in oral potentially malignant disorders among patients accrued over a 10-year period in South East England. Warnakulasuriya S; Kovacevic T; Madden P; Coupland VH; Sperandio M; Odell E; Møller H J Oral Pathol Med; 2011 Oct; 40(9):677-83. PubMed ID: 21762430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]