BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21990969)

  • 21. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive
    Patton MJ; Chen CY; Yang C; McCorrister S; Grant C; Westmacott G; Yuan XY; Ochoa E; Fariss R; Whitmire WM; Carlson JH; Caldwell HD; McClarty G
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382731
    [No Abstract]   [Full Text] [Related]  

  • 22. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases.
    Cortes C; Rzomp KA; Tvinnereim A; Scidmore MA; Wizel B
    Infect Immun; 2007 Dec; 75(12):5586-96. PubMed ID: 17908815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication.
    Leiva N; Capmany A; Damiani MT
    Cell Microbiol; 2013 Jan; 15(1):114-29. PubMed ID: 23006599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells.
    Pirbhai M; Dong F; Zhong Y; Pan KZ; Zhong G
    J Biol Chem; 2006 Oct; 281(42):31495-501. PubMed ID: 16940052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.
    Moorhead AR; Rzomp KA; Scidmore MA
    Infect Immun; 2007 Feb; 75(2):781-91. PubMed ID: 17101644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae.
    Heuer D; Brinkmann V; Meyer TF; Szczepek AJ
    Cell Microbiol; 2003 May; 5(5):315-22. PubMed ID: 12713490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches.
    Snavely EA; Kokes M; Dunn JD; Saka HA; Nguyen BD; Bastidas RJ; McCafferty DG; Valdivia RH
    Pathog Dis; 2014 Aug; 71(3):336-51. PubMed ID: 24838663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.
    Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN
    PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Akt Phosphorylation Influences Persistent Chlamydial Infection and
    Huang X; Tan J; Chen X; Liu M; Zhu H; Li W; He Z; Han J; Ma C
    Front Cell Infect Microbiol; 2021; 11():675890. PubMed ID: 34169005
    [No Abstract]   [Full Text] [Related]  

  • 30. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions.
    Gambarte Tudela J; Capmany A; Romao M; Quintero C; Miserey-Lenkei S; Raposo G; Goud B; Damiani MT
    J Cell Sci; 2015 Aug; 128(16):3068-81. PubMed ID: 26163492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infection of HeLa cells with Chlamydia trachomatis inhibits protein synthesis and causes multiple changes to host cell pathways.
    Ohmer M; Tzivelekidis T; Niedenführ N; Volceanov-Hahn L; Barth S; Vier J; Börries M; Busch H; Kook L; Biniossek ML; Schilling O; Kirschnek S; Häcker G
    Cell Microbiol; 2019 Apr; 21(4):e12993. PubMed ID: 30551267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion.
    Auer D; Hügelschäffer SD; Fischer AB; Rudel T
    Cell Microbiol; 2020 May; 22(5):e13136. PubMed ID: 31677225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract.
    Yang Z; Tang L; Shao L; Zhang Y; Zhang T; Schenken R; Valdivia R; Zhong G
    Infect Immun; 2016 Sep; 84(9):2697-702. PubMed ID: 27382018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Cleavage Pattern of Complement C5 Induced by
    Peng L; Gao J; Hu Z; Zhang H; Tang L; Wang F; Cui L; Liu S; Zhao Y; Xu H; Su X; Feng X; Fang Y; Chen J
    Front Cell Infect Microbiol; 2021; 11():732163. PubMed ID: 35087765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response.
    Rajeeve K; Das S; Prusty BK; Rudel T
    Nat Microbiol; 2018 Jul; 3(7):824-835. PubMed ID: 29946164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoprocessing and self-activation of the secreted protease CPAF in Chlamydia-infected cells.
    Chen D; Lei L; Flores R; Huang Z; Wu Z; Chai J; Zhong G
    Microb Pathog; 2010 Oct; 49(4):164-73. PubMed ID: 20510344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors.
    Zhong G; Fan P; Ji H; Dong F; Huang Y
    J Exp Med; 2001 Apr; 193(8):935-42. PubMed ID: 11304554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF.
    Huang Z; Feng Y; Chen D; Wu X; Huang S; Wang X; Xiao X; Li W; Huang N; Gu L; Zhong G; Chai J
    Cell Host Microbe; 2008 Dec; 4(6):529-42. PubMed ID: 19064254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.
    Yamakawa K; Matsuo J; Okubo T; Nakamura S; Yamaguchi H
    J Infect Chemother; 2018 Feb; 24(2):130-137. PubMed ID: 29132924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells.
    Wolf K; Hackstadt T
    Cell Microbiol; 2001 Mar; 3(3):145-52. PubMed ID: 11260137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.