These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21991309)

  • 1. Spatial genetic structure of a symbiotic beetle-fungal system: toward multi-taxa integrated landscape genetics.
    James PM; Coltman DW; Murray BW; Hamelin RC; Sperling FA
    PLoS One; 2011; 6(10):e25359. PubMed ID: 21991309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient.
    Roe AD; James PM; Rice AV; Cooke JE; Sperling FA
    Microb Ecol; 2011 Aug; 62(2):347-60. PubMed ID: 21468661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships.
    Tsui CK; Farfan L; Roe AD; Rice AV; Cooke JE; El-Kassaby YA; Hamelin RC
    PLoS One; 2014; 9(8):e105455. PubMed ID: 25153489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass.
    Skelton J; Jusino MA; Carlson PS; Smith K; Banik MT; Lindner DL; Palmer JM; Hulcr J
    Mol Ecol; 2019 Nov; 28(22):4971-4986. PubMed ID: 31596982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal.
    Gayathri Samarasekera GD; Bartell NV; Lindgren BS; Cooke JE; Davis CS; James PM; Coltman DW; Mock KE; Murray BW
    Mol Ecol; 2012 Jun; 21(12):2931-48. PubMed ID: 22554298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.
    Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N
    Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Symbioses in Complex Communities: the Fungal Symbionts of Bark and Ambrosia Beetles Within Asian Pines.
    Skelton J; Jusino MA; Li Y; Bateman C; Thai PH; Wu C; Lindner DL; Hulcr J
    Microb Ecol; 2018 Oct; 76(3):839-850. PubMed ID: 29476344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.
    Pec GJ; Karst J; Taylor DL; Cigan PW; Erbilgin N; Cooke JE; Simard SW; Cahill JF
    New Phytol; 2017 Jan; 213(2):864-873. PubMed ID: 27659418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts.
    Ojeda Alayon DI; Tsui CK; Feau N; Capron A; Dhillon B; Zhang Y; Massoumi Alamouti S; Boone CK; Carroll AL; Cooke JE; Roe AD; Sperling FA; Hamelin RC
    Mol Ecol; 2017 Apr; 26(7):2077-2091. PubMed ID: 28231417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains.
    Janes JK; Li Y; Keeling CI; Yuen MM; Boone CK; Cooke JE; Bohlmann J; Huber DP; Murray BW; Coltman DW; Sperling FA
    Mol Biol Evol; 2014 Jul; 31(7):1803-15. PubMed ID: 24803641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.
    Cale JA; Collignon RM; Klutsch JG; Kanekar SS; Hussain A; Erbilgin N
    PLoS One; 2016; 11(9):e0162197. PubMed ID: 27583519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis.
    Roe AD; Rice AV; Coltman DW; Cooke JE; Sperling FA
    Mol Ecol; 2011 Feb; 20(3):584-600. PubMed ID: 21166729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae).
    Mock KE; Bentz BJ; O'neill EM; Chong JP; Orwin J; Pfrender ME
    Mol Ecol; 2007 Feb; 16(3):553-68. PubMed ID: 17257113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae).
    Adams AS; Six DL; Adams SM; Holben WE
    Microb Ecol; 2008 Oct; 56(3):460-6. PubMed ID: 18322728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees.
    Bleiker KP; Six DL
    Microb Ecol; 2009 Jan; 57(1):191-202. PubMed ID: 18545867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi.
    Cale JA; Muskens M; Najar A; Ishangulyyeva G; Hussain A; Kanekar SS; Klutsch JG; Taft S; Erbilgin N
    Tree Physiol; 2017 Dec; 37(12):1597-1610. PubMed ID: 28985375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating models to investigate critical phenological overlaps in complex ecological interactions: the mountain pine beetle-fungus symbiosis.
    Addison A; Powell JA; Bentz BJ; Six DL
    J Theor Biol; 2015 Mar; 368():55-66. PubMed ID: 25556687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological coassociations influence species' responses to past climatic change: an example from a Sonoran Desert bark beetle.
    Garrick RC; Nason JD; Fernández-Manjarrés JF; Dyer RJ
    Mol Ecol; 2013 Jun; 22(12):3345-61. PubMed ID: 24624419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars.
    Vanderpool D; Bracewell RR; McCutcheon JP
    Mol Ecol; 2018 Apr; 27(8):2077-2094. PubMed ID: 29087025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeographic structure and ecological niche modelling reveal signals of isolation and postglacial colonisation in the European stag beetle.
    Cox K; McKeown N; Antonini G; Harvey D; Solano E; Van Breusegem A; Thomaes A
    PLoS One; 2019; 14(4):e0215860. PubMed ID: 31022224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.