These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 21991319)
1. Computational prediction of heme-binding residues by exploiting residue interaction network. Liu R; Hu J PLoS One; 2011; 6(10):e25560. PubMed ID: 21991319 [TBL] [Abstract][Full Text] [Related]
2. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. Liu R; Hu J BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668 [TBL] [Abstract][Full Text] [Related]
3. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins. Zheng C; Wang M; Takemoto K; Akutsu T; Zhang Z; Song J PLoS One; 2012; 7(11):e49716. PubMed ID: 23166753 [TBL] [Abstract][Full Text] [Related]
4. Exploiting structural and topological information to improve prediction of RNA-protein binding sites. Maetschke SR; Yuan Z BMC Bioinformatics; 2009 Oct; 10():341. PubMed ID: 19835626 [TBL] [Abstract][Full Text] [Related]
5. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information. Ma X; Guo J; Liu HD; Xie JM; Sun X IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682 [TBL] [Abstract][Full Text] [Related]
6. HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme. Zhang J; Chai H; Gao B; Yang G; Ma Z IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):147-156. PubMed ID: 28029626 [TBL] [Abstract][Full Text] [Related]
7. Predicting B cell epitope residues with network topology based amino acid indices. Huang J; Honda W; Kanehisa M Genome Inform; 2007; 19():40-9. PubMed ID: 18546503 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of heme proteins: implications for design and prediction. Li T; Bonkovsky HL; Guo JT BMC Struct Biol; 2011 Mar; 11():13. PubMed ID: 21371326 [TBL] [Abstract][Full Text] [Related]
9. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues. Yang X; Wang J; Sun J; Liu R PLoS One; 2015; 10(7):e0133260. PubMed ID: 26176857 [TBL] [Abstract][Full Text] [Related]
10. Exploiting a reduced set of weighted average features to improve prediction of DNA-binding residues from 3D structures. Xiong Y; Xia J; Zhang W; Liu J PLoS One; 2011; 6(12):e28440. PubMed ID: 22174808 [TBL] [Abstract][Full Text] [Related]
11. Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors. Sun M; Wang X; Zou C; He Z; Liu W; Li H BMC Bioinformatics; 2016 Jun; 17(1):231. PubMed ID: 27266516 [TBL] [Abstract][Full Text] [Related]
12. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies. Yang XX; Deng ZL; Liu R Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765 [TBL] [Abstract][Full Text] [Related]
13. Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Wu J; Liu H; Duan X; Ding Y; Wu H; Bai Y; Sun X Bioinformatics; 2009 Jan; 25(1):30-5. PubMed ID: 19008251 [TBL] [Abstract][Full Text] [Related]
14. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches. Liu R; Hu J Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141 [TBL] [Abstract][Full Text] [Related]
15. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. Kumar M; Gromiha MM; Raghava GP J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174 [TBL] [Abstract][Full Text] [Related]
16. Prediction of RNA-binding residues in protein sequences using support vector machines. Wang L; Brown SJ Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5830-3. PubMed ID: 17946337 [TBL] [Abstract][Full Text] [Related]
18. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121 [TBL] [Abstract][Full Text] [Related]
19. Predicting protein residue-residue contacts using random forests and deep networks. Luttrell J; Liu T; Zhang C; Wang Z BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477 [TBL] [Abstract][Full Text] [Related]
20. Predicting DNA-binding sites of proteins from amino acid sequence. Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]