These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21991360)

  • 1. Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein.
    Bikadi Z; Hazai I; Malik D; Jemnitz K; Veres Z; Hari P; Ni Z; Loo TW; Clarke DM; Hazai E; Mao Q
    PLoS One; 2011; 6(10):e25815. PubMed ID: 21991360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting substrates of the human breast cancer resistance protein using a support vector machine method.
    Hazai E; Hazai I; Ragueneau-Majlessi I; Chung SP; Bikadi Z; Mao Q
    BMC Bioinformatics; 2013 Apr; 14():130. PubMed ID: 23586520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational models for identifying potential P-glycoprotein substrates and inhibitors.
    Crivori P; Reinach B; Pezzetta D; Poggesi I
    Mol Pharm; 2006; 3(1):33-44. PubMed ID: 16686367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies.
    Mora Lagares L; Minovski N; Caballero Alfonso AY; Benfenati E; Wellens S; Culot M; Gosselet F; Novič M
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors.
    Poongavanam V; Haider N; Ecker GF
    Bioorg Med Chem; 2012 Sep; 20(18):5388-95. PubMed ID: 22595422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme.
    Leong MK; Chen HB; Shih YH
    PLoS One; 2012; 7(3):e33829. PubMed ID: 22439003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein.
    Ohashi R; Watanabe R; Esaki T; Taniguchi T; Torimoto-Katori N; Watanabe T; Ogasawara Y; Takahashi T; Tsukimoto M; Mizuguchi K
    Mol Pharm; 2019 May; 16(5):1851-1863. PubMed ID: 30933526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting binding to p-glycoprotein by flexible receptor docking.
    Dolghih E; Bryant C; Renslo AR; Jacobson MP
    PLoS Comput Biol; 2011 Jun; 7(6):e1002083. PubMed ID: 21731480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico model for P-glycoprotein substrate prediction: insights from molecular dynamics and in vitro studies.
    Prajapati R; Singh U; Patil A; Khomane KS; Bagul P; Bansal AK; Sangamwar AT
    J Comput Aided Mol Des; 2013 Apr; 27(4):347-63. PubMed ID: 23612916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers.
    Bentz J; Ellens H
    Methods Mol Biol; 2021; 2342():737-763. PubMed ID: 34272715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors.
    Tan W; Mei H; Chao L; Liu T; Pan X; Shu M; Yang L
    J Comput Aided Mol Des; 2013 Dec; 27(12):1067-73. PubMed ID: 24322389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
    Lee TD; Lee OW; Brimacombe KR; Chen L; Guha R; Lusvarghi S; Tebase BG; Klumpp-Thomas C; Robey RW; Ambudkar SV; Shen M; Gottesman MM; Hall MD
    Mol Pharmacol; 2019 Nov; 96(5):629-640. PubMed ID: 31515284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure and functions of P-glycoprotein.
    Li Y; Yuan H; Yang K; Xu W; Tang W; Li X
    Curr Med Chem; 2010; 17(8):786-800. PubMed ID: 20088754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein.
    Sajid A; Lusvarghi S; Murakami M; Chufan EE; Abel B; Gottesman MM; Durell SR; Ambudkar SV
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29609-29617. PubMed ID: 33168729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers.
    Troutman MD; Thakker DR
    Pharm Res; 2003 Aug; 20(8):1200-9. PubMed ID: 12948018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning-Based Prediction Platform for P-Glycoprotein Modulators and Its Validation by Molecular Docking.
    Kadioglu O; Efferth T
    Cells; 2019 Oct; 8(10):. PubMed ID: 31640190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of shape similarities for the classification of P-glycoprotein substrates and nonsubstrates.
    Schwaha R; Ecker GF
    Future Med Chem; 2011 Jul; 3(9):1117-28. PubMed ID: 21806376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors.
    Klepsch F; Vasanthanathan P; Ecker GF
    J Chem Inf Model; 2014 Jan; 54(1):218-29. PubMed ID: 24050383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme.
    Chen C; Lee MH; Weng CF; Leong MK
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30037151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.