These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21991540)
1. Online object oriented Monte Carlo computational tool for the needs of biomedical optics. Doronin A; Meglinski I Biomed Opt Express; 2011 Sep; 2(9):2461-9. PubMed ID: 21991540 [TBL] [Abstract][Full Text] [Related]
2. Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics. Doronin A; Meglinski I J Biomed Opt; 2012 Sep; 17(9):90504-1. PubMed ID: 23085901 [TBL] [Abstract][Full Text] [Related]
3. A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media. Glaser AK; Kanick SC; Zhang R; Arce P; Pogue BW Biomed Opt Express; 2013 May; 4(5):741-59. PubMed ID: 23667790 [TBL] [Abstract][Full Text] [Related]
4. Exploring the evolution of circular polarized light backscattered from turbid tissue-like disperse medium utilizing generalized Monte Carlo modeling approach with a combined use of Jones and Stokes-Mueller formalisms. Lopushenko I; Sieryi O; Bykov A; Meglinski I J Biomed Opt; 2024 May; 29(5):052913. PubMed ID: 38089555 [TBL] [Abstract][Full Text] [Related]
5. Next-generation acceleration and code optimization for light transport in turbid media using GPUs. Alerstam E; Lo WC; Han TD; Rose J; Andersson-Engels S; Lilge L Biomed Opt Express; 2010 Sep; 1(2):658-75. PubMed ID: 21258498 [TBL] [Abstract][Full Text] [Related]
6. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface. Doronin A; Tchvialeva L; Markhvida I; Lee TK; Meglinski I J Biomed Opt; 2016 Jul; 21(7):71117. PubMed ID: 27401802 [TBL] [Abstract][Full Text] [Related]
7. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations. Yuan Y; Yu L; Doğan Z; Fang Q J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265 [TBL] [Abstract][Full Text] [Related]
8. Propagation of coherent polarized light in turbid highly scattering medium. Doronin A; Macdonald C; Meglinski I J Biomed Opt; 2014 Feb; 19(2):025005. PubMed ID: 24556700 [TBL] [Abstract][Full Text] [Related]
9. Two electric field Monte Carlo models of coherent backscattering of polarized light. Doronin A; Radosevich AJ; Backman V; Meglinski I J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350 [TBL] [Abstract][Full Text] [Related]
10. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU). Yang O; Choi B Biomed Opt Express; 2013; 4(11):2667-72. PubMed ID: 24298424 [TBL] [Abstract][Full Text] [Related]
11. Graphics-processing-unit-accelerated Monte Carlo simulation of polarized light in complex three-dimensional media. Yan S; Jacques SL; Ramella-Roman JC; Fang Q J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35534924 [TBL] [Abstract][Full Text] [Related]
12. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media. Malektaji S; Lima IT; Escobar I MR; Sherif SS Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833 [TBL] [Abstract][Full Text] [Related]
13. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Ren N; Liang J; Qu X; Li J; Lu B; Tian J Opt Express; 2010 Mar; 18(7):6811-23. PubMed ID: 20389700 [TBL] [Abstract][Full Text] [Related]
14. Solution of the direct problem in turbid media with inclusions using Monte Carlo simulations implemented in graphics processing units: new criterion for processing transmittance data. Carbone N; Di Rocco H; Iriarte DI; Pomarico JA J Biomed Opt; 2010; 15(3):035002. PubMed ID: 20615002 [TBL] [Abstract][Full Text] [Related]
15. MCDataset: a public reference dataset of Monte Carlo simulated quantities for multilayered and voxelated tissues computed by massively parallel PyXOpto Python package. Bürmen M; Pernuš F; Naglič P J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35437973 [TBL] [Abstract][Full Text] [Related]
16. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit. Leung TS; Powell S J Biomed Opt; 2010; 15(5):055007. PubMed ID: 21054089 [TBL] [Abstract][Full Text] [Related]
17. Virtually increased acceptance angle for efficient estimation of spatially resolved reflectance in the subdiffusive regime: a Monte Carlo study. Ivančič M; Naglič P; Pernuš F; Likar B; Bürmen M Biomed Opt Express; 2017 Nov; 8(11):4872-4886. PubMed ID: 29188088 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Fang Q; Boas DA Opt Express; 2009 Oct; 17(22):20178-90. PubMed ID: 19997242 [TBL] [Abstract][Full Text] [Related]
19. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue. Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulations in anomalous radiative transfer: tutorial. Binzoni T; Martelli F J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):1053-1060. PubMed ID: 36215535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]