These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 21992088)
1. Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-loaded microsphere-based scaffolds. Dormer NH; Qiu Y; Lydick AM; Allen ND; Mohan N; Berkland CJ; Detamore MS Tissue Eng Part A; 2012 Apr; 18(7-8):757-67. PubMed ID: 21992088 [TBL] [Abstract][Full Text] [Related]
2. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903 [TBL] [Abstract][Full Text] [Related]
3. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
4. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
5. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
6. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration. Ferreira JR; Padilla R; Urkasemsin G; Yoon K; Goeckner K; Hu WS; Ko CC Tissue Eng Part A; 2013 Aug; 19(15-16):1803-16. PubMed ID: 23495972 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies. Jose G; Shalumon KT; Liao HT; Kuo CY; Chen JP Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947689 [TBL] [Abstract][Full Text] [Related]
8. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds. Popp JR; Laflin KE; Love BJ; Goldstein AS J Tissue Eng Regen Med; 2012 Jan; 6(1):12-20. PubMed ID: 21312335 [TBL] [Abstract][Full Text] [Related]
10. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B; Wan YZ; Tang TT; Gao C; Dai KR Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [TBL] [Abstract][Full Text] [Related]
11. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Son JS; Appleford M; Ong JL; Wenke JC; Kim JM; Choi SH; Oh DS J Control Release; 2011 Jul; 153(2):133-40. PubMed ID: 21420453 [TBL] [Abstract][Full Text] [Related]
12. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen. Song JE; Lee DH; Khang G; Yoon SJ Int J Biol Macromol; 2023 Feb; 229():486-495. PubMed ID: 36587641 [TBL] [Abstract][Full Text] [Related]
13. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970 [TBL] [Abstract][Full Text] [Related]
16. Optimizing fabrication parameters via Taguchi method for production of high yield hydroxyapatite microsphere scaffolds using Drop-on-Demand inkjet method. Wee CY; Lim QRT; Zhao Y; Xu X; Yang Z; Wang D; Thian ES J Biomed Mater Res B Appl Biomater; 2023 Nov; 111(11):1938-1955. PubMed ID: 37378477 [TBL] [Abstract][Full Text] [Related]
17. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen. Bernhardt A; Lode A; Mietrach C; Hempel U; Hanke T; Gelinsky M J Biomed Mater Res A; 2009 Sep; 90(3):852-62. PubMed ID: 18615470 [TBL] [Abstract][Full Text] [Related]
18. In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Choi SW; Zhang Y; Thomopoulos S; Xia Y Langmuir; 2010 Jul; 26(14):12126-31. PubMed ID: 20450216 [TBL] [Abstract][Full Text] [Related]
19. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds. Gholipourmalekabadi M; Mozafari M; Gholipourmalekabadi M; Nazm Bojnordi M; Hashemi-Soteh MB; Salimi M; Rezaei N; Sameni M; Samadikuchaksaraei A; Ghasemi Hamidabadi H Biotechnol Appl Biochem; 2015; 62(4):441-50. PubMed ID: 25196187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]