These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 21992270)
1. Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Daskalaki E; Prountzou A; Diem P; Mougiakakou SG Diabetes Technol Ther; 2012 Feb; 14(2):168-74. PubMed ID: 21992270 [TBL] [Abstract][Full Text] [Related]
2. Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Frandes M; Timar B; Timar R; Lungeanu D Sci Rep; 2017 Jul; 7(1):6232. PubMed ID: 28740090 [TBL] [Abstract][Full Text] [Related]
3. Experimental evaluation of a recursive model identification technique for type 1 diabetes. Finan DA; Doyle FJ; Palerm CC; Bevier WC; Zisser HC; Jovanovic L; Seborg DE J Diabetes Sci Technol; 2009 Sep; 3(5):1192-202. PubMed ID: 20144436 [TBL] [Abstract][Full Text] [Related]
4. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal. Liu C; Vehí J; Avari P; Reddy M; Oliver N; Georgiou P; Herrero P Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597288 [TBL] [Abstract][Full Text] [Related]
5. A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Georga EI; Protopappas VC; Ardigò D; Polyzos D; Fotiadis DI Diabetes Technol Ther; 2013 Aug; 15(8):634-43. PubMed ID: 23848178 [TBL] [Abstract][Full Text] [Related]
8. Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. Zhao C; Dassau E; Jovanovič L; Zisser HC; Doyle FJ; Seborg DE J Diabetes Sci Technol; 2012 May; 6(3):617-33. PubMed ID: 22768893 [TBL] [Abstract][Full Text] [Related]
9. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting. Li K; Liu C; Zhu T; Herrero P; Georgiou P IEEE J Biomed Health Inform; 2020 Feb; 24(2):414-423. PubMed ID: 31369390 [TBL] [Abstract][Full Text] [Related]
10. Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems. Sun X; Rashid M; Hobbs N; Brandt R; Askari MR; Cinar A J Diabetes Sci Technol; 2022 Jan; 16(1):19-28. PubMed ID: 34861777 [TBL] [Abstract][Full Text] [Related]
11. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Pérez-Gandía C; Facchinetti A; Sparacino G; Cobelli C; Gómez EJ; Rigla M; de Leiva A; Hernando ME Diabetes Technol Ther; 2010 Jan; 12(1):81-8. PubMed ID: 20082589 [TBL] [Abstract][Full Text] [Related]
12. The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients. Lu Y; Gribok AV; Ward WK; Reifman J IEEE Trans Biomed Eng; 2010 Aug; 57(8):1839-46. PubMed ID: 20403780 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a new measure of blood glucose variability in diabetes. Kovatchev BP; Otto E; Cox D; Gonder-Frederick L; Clarke W Diabetes Care; 2006 Nov; 29(11):2433-8. PubMed ID: 17065680 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of daily glycemic profiles in well controlled children with type 1 diabetes mellitus using a continuous glucose monitoring system. Tucholski K; Deja G; Skała-Zamorowska E; Jarosz-Chobot P Pediatr Endocrinol Diabetes Metab; 2009; 15(1):29-33. PubMed ID: 19454186 [TBL] [Abstract][Full Text] [Related]
15. A novel adaptive-weighted-average framework for blood glucose prediction. Wang Y; Wu X; Mo X Diabetes Technol Ther; 2013 Oct; 15(10):792-801. PubMed ID: 23883406 [TBL] [Abstract][Full Text] [Related]
16. Night glucose control with MD-Logic artificial pancreas in home setting: a single blind, randomized crossover trial-interim analysis. Nimri R; Muller I; Atlas E; Miller S; Kordonouri O; Bratina N; Tsioli C; Stefanija MA; Danne T; Battelino T; Phillip M Pediatr Diabetes; 2014 Mar; 15(2):91-9. PubMed ID: 23944875 [TBL] [Abstract][Full Text] [Related]
17. Accuracy assessment of online glucose monitoring by a subcutaneous enzymatic glucose sensor during exercise in patients with type 1 diabetes treated by continuous subcutaneous insulin infusion. Radermecker RP; Fayolle C; Brun JF; Bringer J; Renard E Diabetes Metab; 2013 May; 39(3):258-62. PubMed ID: 23522730 [TBL] [Abstract][Full Text] [Related]
18. Universal glucose models for predicting subcutaneous glucose concentration in humans. Gani A; Gribok AV; Lu Y; Ward WK; Vigersky RA; Reifman J IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):157-65. PubMed ID: 19858035 [TBL] [Abstract][Full Text] [Related]
19. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. Georga EI; Protopappas VC; Ardigo D; Marina M; Zavaroni I; Polyzos D; Fotiadis DI IEEE J Biomed Health Inform; 2013 Jan; 17(1):71-81. PubMed ID: 23008265 [TBL] [Abstract][Full Text] [Related]
20. Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes. Del Favero S; Place J; Kropff J; Messori M; Keith-Hynes P; Visentin R; Monaro M; Galasso S; Boscari F; Toffanin C; Di Palma F; Lanzola G; Scarpellini S; Farret A; Kovatchev B; Avogaro A; Bruttomesso D; Magni L; DeVries JH; Cobelli C; Renard E; Diabetes Obes Metab; 2015 May; 17(5):468-76. PubMed ID: 25600304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]