These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 21992327)
1. Temperature dependence of the Landau-Placzek ratio in glass forming liquids. Popova VA; Surovtsev NV J Chem Phys; 2011 Oct; 135(13):134510. PubMed ID: 21992327 [TBL] [Abstract][Full Text] [Related]
2. Rayleigh-Brillouin light-scattering study of a simple glass former: evidence of locally favored structures. Popova VA; Pugachev AM; Surovtsev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011503. PubMed ID: 20866621 [TBL] [Abstract][Full Text] [Related]
3. Temperature dependence of the Landau-Placzek ratio in liquid water. Zykova VA; Karpegina YA; Malinovsky VK; Surovtsev NV Phys Rev E; 2017 Oct; 96(4-1):042608. PubMed ID: 29347548 [TBL] [Abstract][Full Text] [Related]
4. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario. Popova VA; Surovtsev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447 [TBL] [Abstract][Full Text] [Related]
5. Unusual features of long-range density fluctuations in glass-forming organic liquids: a Rayleigh and Rayleigh-Brillouin light scattering study. Patkowski A; Fischer EW; Steffen W; Gläser H; Baumann M; Ruths T; Meier G Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061503. PubMed ID: 11415106 [TBL] [Abstract][Full Text] [Related]
6. A direct test of the correlation between elastic parameters and fragility of ten glass formers and their relationship to elastic models of the glass transition. Torchinsky DH; Johnson JA; Nelson KA J Chem Phys; 2009 Feb; 130(6):064502. PubMed ID: 19222279 [TBL] [Abstract][Full Text] [Related]
7. Universal and non-universal features of the dynamic susceptibility of supercooled liquids. Brodin A; Rössler EA J Phys Condens Matter; 2006 Sep; 18(37):8481-92. PubMed ID: 21690902 [TBL] [Abstract][Full Text] [Related]
8. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids. Bryk T; Ruocco G; Scopigno T J Chem Phys; 2013 Jan; 138(3):034502. PubMed ID: 23343280 [TBL] [Abstract][Full Text] [Related]
9. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition? Voudouris P; Gomopoulos N; Le Grand A; Hadjichristidis N; Floudas G; Ediger MD; Fytas G J Chem Phys; 2010 Feb; 132(7):074906. PubMed ID: 20170250 [TBL] [Abstract][Full Text] [Related]
10. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity. Matsuoka H J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018 [TBL] [Abstract][Full Text] [Related]
11. Interfacial effects on vitrification of confined glass-forming liquids. Trofymluk O; Levchenko AA; Navrotsky A J Chem Phys; 2005 Nov; 123(19):194509. PubMed ID: 16321102 [TBL] [Abstract][Full Text] [Related]
12. Application of the entropy theory of glass formation to poly(alpha-olefins). Stukalin EB; Douglas JF; Freed KF J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147 [TBL] [Abstract][Full Text] [Related]
13. The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II. Blochowicz T; Gainaru C; Medick P; Tschirwitz C; Rössler EA J Chem Phys; 2006 Apr; 124(13):134503. PubMed ID: 16613457 [TBL] [Abstract][Full Text] [Related]
14. The protein "glass" transition and the role of the solvent. Ngai KL; Capaccioli S; Shinyashiki N J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525 [TBL] [Abstract][Full Text] [Related]
15. Structural relaxation dynamics in binary glass-forming molecular liquids with ideal and complex mixing behavior. Wang LM; Tian Y; Liu R; Richert R J Phys Chem B; 2010 Mar; 114(10):3618-22. PubMed ID: 20178328 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of small-molecule glass formers confined in nanopores. Prisk TR; Tyagi M; Sokol PE J Chem Phys; 2011 Mar; 134(11):114506. PubMed ID: 21428631 [TBL] [Abstract][Full Text] [Related]
17. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol. Yardimci H; Leheny RL J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419 [TBL] [Abstract][Full Text] [Related]
18. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV; Angell CA J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109 [TBL] [Abstract][Full Text] [Related]
19. Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scattering. Klieber C; Hecksher T; Pezeril T; Torchinsky DH; Dyre JC; Nelson KA J Chem Phys; 2013 Mar; 138(12):12A544. PubMed ID: 23556795 [TBL] [Abstract][Full Text] [Related]
20. On the correlation between fragility and stretching in glass-forming liquids. Niss K; Dalle-Ferrier C; Tarjus G; Alba-Simionesco C J Phys Condens Matter; 2007 Feb; 19(7):076102. PubMed ID: 22251613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]