These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21992334)

  • 1. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.
    Urbic T; Holovko MF
    J Chem Phys; 2011 Oct; 135(13):134706. PubMed ID: 21992334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory for the three-dimensional Mercedes-Benz model of water.
    Bizjak A; Urbic T; Vlachy V; Dill KA
    J Chem Phys; 2009 Nov; 131(19):194504. PubMed ID: 19929057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of the integral equation theory to study the hydrophobic interaction.
    Mohorič T; Urbic T; Hribar-Lee B
    J Chem Phys; 2014 Jan; 140(2):024502. PubMed ID: 24437891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.
    Mohoric T; Urbic T; Hribar-Lee B
    J Chem Phys; 2013 Jul; 139(2):024101. PubMed ID: 23862923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force.
    Dias CL; Hynninen T; Ala-Nissila T; Foster AS; Karttunen M
    J Chem Phys; 2011 Feb; 134(6):065106. PubMed ID: 21322739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved thermodynamic perturbation theory for Mercedes-Benz water.
    Urbic T; Vlachy V; Kalyuzhnyi YV; Dill KA
    J Chem Phys; 2007 Nov; 127(17):174511. PubMed ID: 17994831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-softened fluids as a model for water and the hydrophobic effect.
    Huš M; Urbic T
    J Chem Phys; 2013 Sep; 139(11):114504. PubMed ID: 24070294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple model of hydrophobic hydration.
    Lukšič M; Urbic T; Hribar-Lee B; Dill KA
    J Phys Chem B; 2012 May; 116(21):6177-86. PubMed ID: 22564051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical-mechanical liquid theories reproduce anomalous thermodynamic properties of explicit two-dimensional water models.
    Ogrin P; Urbic T; Fennell CJ
    Phys Rev E; 2022 Sep; 106(3-1):034115. PubMed ID: 36266898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature and high-temperature approximations for penetrable-sphere fluids: comparison with Monte Carlo simulations and integral equation theories.
    Malijevský A; Yuste SB; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021504. PubMed ID: 17930041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced density profile of small particles near a large particle: Results of an integral equation theory with an accurate bridge function and a Monte Carlo simulation.
    Nakamura Y; Arai S; Kinoshita M; Yoshimori A; Akiyama R
    J Chem Phys; 2019 Jul; 151(4):044506. PubMed ID: 31370562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correctness of certain integral equation theories for core-softened fluids.
    Huš M; Zalar M; Urbic T
    J Chem Phys; 2013 Jun; 138(22):224508. PubMed ID: 23781806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory for the solvation of nonpolar solutes in water.
    Urbic T; Vlachy V; Kalyuzhnyi YV; Dill KA
    J Chem Phys; 2007 Nov; 127(17):174505. PubMed ID: 17994825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confined water: a Mercedes-Benz model study.
    Urbic T; Vlachy V; Dill KA
    J Phys Chem B; 2006 Mar; 110(10):4963-70. PubMed ID: 16526737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical model for three-dimensional Mercedes-Benz water molecules.
    Urbic T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061503. PubMed ID: 23005100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple analytic equations of state for hard-core single and double Yukawa fluids and mixtures based on second-order Barker-Henderson perturbation theory.
    Jiuxun S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061503. PubMed ID: 14754208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of adhesion between hydrophilic and hydrophobic self-assembled monolayers in water.
    Pertsin A; Grunze M
    J Chem Phys; 2012 Aug; 137(5):054701. PubMed ID: 22894365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-range combined water model.
    Grigoriev FV; Sulimov VB
    J Mol Graph Model; 2019 May; 88():160-167. PubMed ID: 30708282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.