BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21992367)

  • 1. Skin dose mapping for fluoroscopically guided interventions.
    Johnson PB; Borrego D; Balter S; Johnson K; Siragusa D; Bolch WE
    Med Phys; 2011 Oct; 38(10):5490-9. PubMed ID: 21992367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic monitoring of localized skin dose with fluoroscopic and interventional procedures.
    Khodadadegan Y; Zhang M; Pavlicek W; Paden RG; Chong B; Schueler BA; Fetterly KA; Langer SG; Wu T
    J Digit Imaging; 2011 Aug; 24(4):626-39. PubMed ID: 20706859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid phantom system for patient skin and organ dosimetry in fluoroscopically guided interventions.
    Borrego D; Siragusa DA; Balter S; Bolch WE
    Med Phys; 2017 Sep; 44(9):4928-4942. PubMed ID: 28636805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical validation of UF-RIPSA: A rapid in-clinic peak skin dose mapping algorithm for fluoroscopically guided interventions.
    Borrego D; Marshall EL; Tran T; Siragusa DA; Bolch WE
    J Appl Clin Med Phys; 2018 May; 19(3):343-350. PubMed ID: 29577612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?
    Jones AK; Ensor JE; Pasciak AS
    Med Phys; 2014 Jul; 41(7):071913. PubMed ID: 24989391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of anthropometric patient-phantom matching on organ dose: a hybrid phantom study for fluoroscopy guided interventions.
    Johnson PB; Geyer A; Borrego D; Ficarrotta K; Johnson K; Bolch WE
    Med Phys; 2011 Feb; 38(2):1008-17. PubMed ID: 21452738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VERIFICATION OF INDICATED SKIN ENTRANCE AIR KERMA FOR CARDIAC X-RAY-GUIDED INTERVENTION USING GAFCHROMIC FILM.
    Nilsson Althén J; Sandborg M
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):245-8. PubMed ID: 26541185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of exposure and geometric parameters on absorbed doses associated with common neuro-interventional procedures.
    Safari MJ; Wong JHD; Jong WL; Thorpe N; Cutajar D; Rosenfeld A; Ng KH
    Phys Med; 2017 Mar; 35():66-72. PubMed ID: 28256398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of trigger levels to steer the follow-up of radiation effects in patients undergoing fluoroscopically-guided interventional procedures in Belgium.
    Struelens L; Bacher K; Bosmans H; Bleeser F; Hoornaert MT; Malchair F; Balter S
    Phys Med; 2014 Dec; 30(8):934-40. PubMed ID: 25277316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking the DACS-integrated Radiation Dose Monitor® skin dose mapping software using XR-RV3 Gafchromic® films.
    Habib Geryes B; Hadid-Beurrier L; Waryn MJ; Jean-Pierre A; Farah J
    Med Phys; 2018 Oct; 45(10):4683-4692. PubMed ID: 30098029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures.
    Marshall EL; Borrego D; Tran T; Fudge JC; Bolch WE
    Phys Med Biol; 2018 Mar; 63(5):055006. PubMed ID: 29405126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring and Follow-Up of High Radiation Dose Cases in Interventional Radiology.
    Perry BC; Ingraham CR; Stewart BK; Valji K; Kanal KM
    Acad Radiol; 2019 Feb; 26(2):163-169. PubMed ID: 29934019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system.
    Rana VK; Rudin S; Bednarek DR
    Med Phys; 2016 Sep; 43(9):5131. PubMed ID: 27587043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vendor-independent skin dose mapping application for interventional radiology and cardiology.
    Krajinović M; Kržanović N; Ciraj-Bjelac O
    J Appl Clin Med Phys; 2021 Feb; 22(2):145-157. PubMed ID: 33440056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures.
    Safari MJ; Wong JH; Ng KH; Jong WL; Cutajar DL; Rosenfeld AB
    Med Phys; 2015 May; 42(5):2550-8. PubMed ID: 25979047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology.
    Nakamura M; Chida K; Zuguchi M
    Med Phys; 2014 Oct; 41(10):101913. PubMed ID: 25281965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of methods to estimate the patient dose in interventional radiology.
    Kosunen A; Komppa T; Toivonen M
    Radiat Prot Dosimetry; 2005; 117(1-3):178-84. PubMed ID: 16464835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interventional respiratory motion compensation by simultaneous fluoroscopic and nuclear imaging: a phantom study.
    Dietze MMA; Kunnen B; Lam MGEH; de Jong HWAM
    Phys Med Biol; 2021 Mar; 66(6):065001. PubMed ID: 33571969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.