BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 2199237)

  • 21. Deletion of smooth muscle alpha-actin alters blood-retina barrier permeability and retinal function.
    Tomasek JJ; Haaksma CJ; Schwartz RJ; Vuong DT; Zhang SX; Ash JD; Ma JX; Al-Ubaidi MR
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2693-700. PubMed ID: 16723488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A.
    Hofman P; Blaauwgeers HG; Tolentino MJ; Adamis AP; Nunes Cardozo BJ; Vrensen GF; Schlingemann RO
    Curr Eye Res; 2000 Aug; 21(2):637-45. PubMed ID: 11148600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The blood-retinal barrier: structure and functional significance.
    Runkle EA; Antonetti DA
    Methods Mol Biol; 2011; 686():133-48. PubMed ID: 21082369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro model of the outer blood-retina barrier.
    Steuer H; Jaworski A; Stoll D; Schlosshauer B
    Brain Res Brain Res Protoc; 2004 Apr; 13(1):26-36. PubMed ID: 15063838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blood-eye barriers in the rat: correlation of ultrastructure with function.
    Stewart PA; Tuor UI
    J Comp Neurol; 1994 Feb; 340(4):566-76. PubMed ID: 8006217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urethane-induced rat retinopathy. Plasticity of the blood-retinal barrier in disease.
    Korte GE; Bellhorn RW; Burns MS
    Invest Ophthalmol Vis Sci; 1984 Sep; 25(9):1027-34. PubMed ID: 6469486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passive and active transport in choroidal and retinal capillaries of various non-electrolyte substances in normal rats.
    Cioli S
    Trans Ophthalmol Soc U K (1962); 1977 Sep; 97(4):568-72. PubMed ID: 281787
    [No Abstract]   [Full Text] [Related]  

  • 28. Isolation and characterization of retinal endothelial cells.
    Antonetti DA; Wolpert EB
    Methods Mol Med; 2003; 89():365-74. PubMed ID: 12958433
    [No Abstract]   [Full Text] [Related]  

  • 29. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group.
    Barber AJ; Antonetti DA; Gardner TW
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3561-8. PubMed ID: 11006253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of acetazolamide on passive and active transport of fluorescein across the normal BRB.
    Moldow B; Sander B; Larsen M; Lund-Andersen H
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1770-5. PubMed ID: 10393047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protective effect of clusterin on blood-retinal barrier breakdown in diabetic retinopathy.
    Kim JH; Kim JH; Yu YS; Min BH; Kim KW
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1659-65. PubMed ID: 19875648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of vitreoretinal VEGF elevation and blood-retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine.
    Kusari J; Zhou SX; Padillo E; Clarke KG; Gil DW
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1044-51. PubMed ID: 19710406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization and comparison of the outer blood-retina barrier and the blood-brain barrier.
    Steuer H; Jaworski A; Elger B; Kaussmann M; Keldenich J; Schneider H; Stoll D; Schlosshauer B
    Invest Ophthalmol Vis Sci; 2005 Mar; 46(3):1047-53. PubMed ID: 15728564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remodeling of retinal capillaries in the diabetic hypertensive rat.
    Dosso AA; Leuenberger PM; Rungger-Brändle E
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2405-10. PubMed ID: 10476809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron microscopic immunocytochemical evidence for the mechanism of blood-retinal barrier breakdown in galactosemic rats and its association with aldose reductase expression and inhibition.
    Vinores SA; Van Niel E; Swerdloff JL; Campochiaro PA
    Exp Eye Res; 1993 Dec; 57(6):723-35. PubMed ID: 8150024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat.
    Takata K; Kasahara T; Kasahara M; Ezaki O; Hirano H
    Invest Ophthalmol Vis Sci; 1992 Feb; 33(2):377-83. PubMed ID: 1740368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The inner blood-retinal barrier: molecular structure and transport biology.
    Hosoya K; Tachikawa M
    Adv Exp Med Biol; 2012; 763():85-104. PubMed ID: 23397620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nutrient transport and the blood-brain barrier in developing animals.
    Cornford EM; Cornford ME
    Fed Proc; 1986 Jun; 45(7):2065-72. PubMed ID: 2872083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas.
    Murata T; Nakagawa K; Khalil A; Ishibashi T; Inomata H; Sueishi K
    Lab Invest; 1996 Apr; 74(4):819-25. PubMed ID: 8606491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The blood-ocular barriers.
    Cunha-Vaz J
    Surv Ophthalmol; 1979; 23(5):279-96. PubMed ID: 380030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.