These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21993027)

  • 1. What has transcranial magnetic stimulation taught us about neural adaptations to strength training? A brief review.
    Kidgell DJ; Pearce AJ
    J Strength Cond Res; 2011 Nov; 25(11):3208-17. PubMed ID: 21993027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies.
    Carroll TJ; Selvanayagam VS; Riek S; Semmler JG
    Acta Physiol (Oxf); 2011 Jun; 202(2):119-40. PubMed ID: 21382178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early neural responses to strength training.
    Selvanayagam VS; Riek S; Carroll TJ
    J Appl Physiol (1985); 2011 Aug; 111(2):367-75. PubMed ID: 21551014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal properties following short-term strength training of an intrinsic hand muscle.
    Kidgell DJ; Pearce AJ
    Hum Mov Sci; 2010 Oct; 29(5):631-41. PubMed ID: 20400192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans.
    Carroll TJ; Barton J; Hsu M; Lee M
    Acta Physiol (Oxf); 2009 Oct; 197(2):161-73. PubMed ID: 19392872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticomotor plasticity following unilateral strength training.
    Goodwill AM; Pearce AJ; Kidgell DJ
    Muscle Nerve; 2012 Sep; 46(3):384-93. PubMed ID: 22907229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation.
    Bertasi V; Bertolasi L; Frasson E; Priori A
    Exp Brain Res; 2000 Jun; 132(3):384-9. PubMed ID: 10883387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation.
    Sidhu SK; Bentley DJ; Carroll TJ
    Muscle Nerve; 2009 Feb; 39(2):186-96. PubMed ID: 19034956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor cortex excitability is not differentially modulated following skill and strength training.
    Leung M; Rantalainen T; Teo WP; Kidgell D
    Neuroscience; 2015 Oct; 305():99-108. PubMed ID: 26259901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation.
    Lagan J; Lang P; Strutton PH
    Clin Neurophysiol; 2008 Dec; 119(12):2839-45. PubMed ID: 18976953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short- and long-term modulation of upper limb motor-evoked potentials induced by acupuncture.
    Maioli C; Falciati L; Marangon M; Perini S; Losio A
    Eur J Neurosci; 2006 Apr; 23(7):1931-8. PubMed ID: 16623849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions.
    Beck S; Taube W; Gruber M; Amtage F; Gollhofer A; Schubert M
    Brain Res; 2007 Nov; 1179():51-60. PubMed ID: 17889840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity.
    Roy FD; Norton JA; Gorassini MA
    J Neurophysiol; 2007 Aug; 98(2):657-67. PubMed ID: 17537908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects.
    Andersen B; Felding UA; Krarup C
    J Appl Physiol (1985); 2012 Mar; 112(5):832-40. PubMed ID: 22174399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor cortical measures of use-dependent plasticity are graded from distal to proximal in the human upper limb.
    Krutky MA; Perreault EJ
    J Neurophysiol; 2007 Dec; 98(6):3230-41. PubMed ID: 17942623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.