BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21993247)

  • 21. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Metabolite Saccharopine Impairs Neuronal Development by Inhibiting the Neurotrophic Function of Glucose-6-Phosphate Isomerase.
    Guo Y; Wu J; Wang M; Wang X; Jian Y; Yang C; Guo W
    J Neurosci; 2022 Mar; 42(13):2631-2646. PubMed ID: 35135854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts.
    Ekanayake DK; Andi B; Bobyk KD; West AH; Cook PF
    J Biol Chem; 2010 Jul; 285(27):20756-68. PubMed ID: 20427272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from alpha-aminoadipic acid.
    Naranjo L; Martín de Valmaseda E; Casqueiro J; Ullán RV; Lamas-Maceiras M; Bañuelos O; Martín JF
    Appl Environ Microbiol; 2004 Feb; 70(2):1031-9. PubMed ID: 14766586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The enzymology of lysine catabolism in rice seeds--isolation, characterization, and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunctional polypeptide.
    Gaziola SA; Teixeira CM; Lugli J; Sodek L; Azevedo RA
    Eur J Biochem; 1997 Jul; 247(1):364-71. PubMed ID: 9249048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lysine biosynthesis in Penicillium chrysogenum is regulated by feedback inhibition of alpha-aminoadipate reductase.
    Affenzeller K; Jaklitsch WM; Hönlinger C; Kubicek CP
    FEMS Microbiol Lett; 1989 Apr; 49(2-3):293-7. PubMed ID: 2501148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency.
    Crowther LM; Mathis D; Poms M; Plecko B
    J Inherit Metab Dis; 2019 Jul; 42(4):620-628. PubMed ID: 30767241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; West AH; Cook PF
    Arch Biochem Biophys; 2012 Jun; 522(1):57-61. PubMed ID: 22521736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutational analysis of the novel catalytic domains of alpha-aminoadipate reductase (Lys2p) from Candida albicans.
    Guo S; Bhattacharjee JK
    Mol Genet Genomics; 2003 May; 269(2):271-9. PubMed ID: 12756539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse.
    Papes F; Kemper EL; Cord-Neto G; Langone F; Arruda P
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):555-63. PubMed ID: 10567240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The saccharopine pathway in seed development and stress response of maize.
    Kiyota E; Pena IA; Arruda P
    Plant Cell Environ; 2015 Nov; 38(11):2450-61. PubMed ID: 25929294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study on the proton shuttle mechanism of saccharopine dehydrogenase.
    Sheng X; Gao J; Liu Y; Liu C
    J Mol Graph Model; 2013 Jul; 44():17-25. PubMed ID: 23732302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lysine α-ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver.
    Pink DB; Gatrell SK; Elango R; Turchinsky J; Kiess AS; Blemings KP; Dixon WT; Ball RO
    Nutr Res; 2011 Jul; 31(7):544-54. PubMed ID: 21840471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Andi B; Xu H; Cook PF; West AH
    Biochemistry; 2007 Nov; 46(44):12512-21. PubMed ID: 17939687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of free glutamate content in meat by dietary lysine in broilers.
    Watanabe G; Kobayashi H; Shibata M; Kubota M; Kadowaki M; Fujimura S
    Anim Sci J; 2015 Apr; 86(4):435-42. PubMed ID: 25491790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of oxidative degradation of L-lysine in rat liver mitochondria.
    Scislowski PW; Foster AR; Fuller MF
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):887-91. PubMed ID: 8010974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alpha-aminoadipate delta-semialdehyde synthase mRNA knockdown reduces the lysine requirement of a mouse hepatic cell line.
    Cleveland BM; Kiess AS; Blemings KP
    J Nutr; 2008 Nov; 138(11):2143-7. PubMed ID: 18936211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis.
    Zhou J; Wang X; Wang M; Chang Y; Zhang F; Ban Z; Tang R; Gan Q; Wu S; Guo Y; Zhang Q; Wang F; Zhao L; Jing Y; Qian W; Wang G; Guo W; Yang C
    J Cell Biol; 2019 Feb; 218(2):580-597. PubMed ID: 30573525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the his-tagged saccharopine reductase from Saccharomyces cerevisiae at 1.7-A resolution.
    Andi B; Cook PF; West AH
    Cell Biochem Biophys; 2006; 46(1):17-26. PubMed ID: 16943620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis.
    Tang G; Miron D; Zhu-Shimoni JX; Galili G
    Plant Cell; 1997 Aug; 9(8):1305-16. PubMed ID: 9286108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.