These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 21993302)

  • 1. The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide.
    Piao Y; Liu F; Seo TS
    Chem Commun (Camb); 2011 Nov; 47(44):12149-51. PubMed ID: 21993302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide.
    Wu C; Zhou Y; Miao X; Ling L
    Analyst; 2011 May; 136(10):2106-10. PubMed ID: 21442091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity.
    Zhang M; Yin BC; Wang XF; Ye BC
    Chem Commun (Camb); 2011 Feb; 47(8):2399-401. PubMed ID: 21305066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective and sensitive method for cysteine detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide.
    Liu H; Wang Y; Shen A; Zhou X; Hu J
    Talanta; 2012 May; 93():330-5. PubMed ID: 22483919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface.
    Ueno Y; Furukawa K; Matsuo K; Inoue S; Hayashi K; Hibino H
    Chem Commun (Camb); 2013 Nov; 49(88):10346-8. PubMed ID: 23985796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-length-dependent fluorescence signaling on graphene oxide surface.
    Huang PJ; Liu J
    Small; 2012 Apr; 8(7):977-83. PubMed ID: 22323437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of DNA hybridization using induced fluorescence resonance energy transfer.
    Howell WM
    Methods Mol Biol; 2006; 335():33-41. PubMed ID: 16785618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel sensing strategy for the detection of Staphylococcus aureus DNA by using a graphene oxide-based fluorescent probe.
    Pang S; Gao Y; Li Y; Liu S; Su X
    Analyst; 2013 May; 138(9):2749-54. PubMed ID: 23505623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer.
    Liu F; Choi JY; Seo TS
    Biosens Bioelectron; 2010 Jun; 25(10):2361-5. PubMed ID: 20299201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-length-dependent fluorescent sensing based on energy transfer in self-assembled multilayers.
    Sun XY; Liu B; Sun YF; Yu Y
    Biosens Bioelectron; 2014 Nov; 61():466-70. PubMed ID: 24934748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer.
    Sabanayagam CR; Eid JS; Meller A
    J Chem Phys; 2005 Feb; 122(6):061103. PubMed ID: 15740360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD; Khachatrian A; Buckhout-White S; Deschamps JR; Goldman ER; Medintz IL; Melinger JS
    J Phys Chem B; 2014 Dec; 118(50):14555-65. PubMed ID: 25397906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip FRET Graphene Oxide Aptasensor: Quantitative Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer.
    Ueno Y; Furukawa K; Tin A; Hibino H
    Anal Sci; 2015; 31(9):875-9. PubMed ID: 26353952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes.
    Ghoneim M; Musselman CA
    J Fluoresc; 2023 Mar; 33(2):413-421. PubMed ID: 36435903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer.
    Bi S; Zhao T; Luo B
    Chem Commun (Camb); 2012 Jan; 48(1):106-8. PubMed ID: 22037540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide for rapid microRNA detection.
    Lu Z; Zhang L; Deng Y; Li S; He N
    Nanoscale; 2012 Sep; 4(19):5840-2. PubMed ID: 22895793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-responsive, DNA-directed reversible assembly of graphene oxide.
    Qu K; Ren J; Qu X
    Mol Biosyst; 2011 Sep; 7(9):2681-7. PubMed ID: 21748191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.