BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 21993351)

  • 1. Electrophysiological evidence for different effects of working memory load on interference control in adolescents than adults.
    Spronk M; Jonkman LM
    Int J Psychophysiol; 2012 Jan; 83(1):24-35. PubMed ID: 21993351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of concurrent working memory load on distractor and conflict processing in a name-face Stroop task.
    Jongen EM; Jonkman LM
    Psychophysiology; 2011 Jan; 48(1):31-43. PubMed ID: 20525010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age differences in target detection and interference resolution in working memory: an event-related potential study.
    Tays WJ; Dywan J; Mathewson KJ; Segalowitz SJ
    J Cogn Neurosci; 2008 Dec; 20(12):2250-62. PubMed ID: 18457511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of non-spatial working memory capacity during childhood and adolescence and the role of interference control: an N-Back task study.
    Schleepen TM; Jonkman LM
    Dev Neuropsychol; 2010; 35(1):37-56. PubMed ID: 20390591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm.
    SanMiguel I; Corral MJ; Escera C
    J Cogn Neurosci; 2008 Jul; 20(7):1131-45. PubMed ID: 18284343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of increased working memory load on semantic neural systems: a high-resolution event-related brain potential study.
    D'Arcy RC; Service E; Connolly JF; Hawco CS
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):177-91. PubMed ID: 15653292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural time course of conflict adaptation effects on the Stroop task.
    Larson MJ; Kaufman DA; Perlstein WM
    Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task.
    Stern ER; Mangels JA
    J Cogn Neurosci; 2006 Jun; 18(6):1004-17. PubMed ID: 16839306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of working memory performance in adolescents and young adults with dyslexia.
    Vasic N; Lohr C; Steinbrink C; Martin C; Wolf RC
    Neuropsychologia; 2008 Jan; 46(2):640-8. PubMed ID: 17950764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related differences in brain activity during verbal recency memory.
    Rajah MN; McIntosh AR
    Brain Res; 2008 Mar; 1199():111-25. PubMed ID: 18282558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal characteristics of top-down modulations during working memory maintenance: an event-related potential study of the N170 component.
    Sreenivasan KK; Katz J; Jha AP
    J Cogn Neurosci; 2007 Nov; 19(11):1836-44. PubMed ID: 17958486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age differences in stroop interference in working memory.
    McCabe DP; Robertson CL; Smith AD
    J Clin Exp Neuropsychol; 2005 Jul; 27(5):633-44. PubMed ID: 16019640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of response prepotency strength, general working memory resources, and specific working memory load on the ability to inhibit predominant responses: a comparison of young and elderly participants.
    Grandjean J; Collette F
    Brain Cogn; 2011 Nov; 77(2):237-47. PubMed ID: 21885178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging effects on selective attention-related electroencephalographic patterns during face encoding.
    Deiber MP; Rodriguez C; Jaques D; Missonnier P; Emch J; Millet P; Gold G; Giannakopoulos P; Ibañez V
    Neuroscience; 2010 Nov; 171(1):173-86. PubMed ID: 20801196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age effects on retroactive interference during working memory maintenance.
    Solesio-Jofre E; Lorenzo-López L; Gutiérrez R; López-Frutos JM; Ruiz-Vargas JM; Maestú F
    Biol Psychol; 2011 Sep; 88(1):72-82. PubMed ID: 21741434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.
    Deiber MP; Missonnier P; Bertrand O; Gold G; Fazio-Costa L; Ibañez V; Giannakopoulos P
    J Cogn Neurosci; 2007 Jan; 19(1):158-72. PubMed ID: 17214572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual verbal working memory processing may be interfered by previously seen faces.
    Gonzalez-Garrido AA; Ramos-Loyo J; Gomez-Velazquez FR; Alvelais Alarcón M; Moises de la Serna Tuya J
    Int J Psychophysiol; 2007 Aug; 65(2):141-51. PubMed ID: 17555835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modality-specific control processes in verbal versus spatial working memory.
    Watter S; Heisz JJ; Karle JW; Shedden JM; Kiss I
    Brain Res; 2010 Aug; 1347():90-103. PubMed ID: 20570659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERP measures indicate both attention and working memory encoding decrements in aging.
    Finnigan S; O'Connell RG; Cummins TD; Broughton M; Robertson IH
    Psychophysiology; 2011 May; 48(5):601-11. PubMed ID: 21039584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.