These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21993495)

  • 1. Reversible redox reaction and water configuration on a positively charged platinum surface: first principles molecular dynamics simulation.
    Ikeshoji T; Otani M; Hamada I; Okamoto Y
    Phys Chem Chem Phys; 2011 Dec; 13(45):20223-7. PubMed ID: 21993495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agostic interactions and dissociation in the first layer of water on Pt(111).
    Jacob T; Goddard WA
    J Am Chem Soc; 2004 Aug; 126(30):9360-8. PubMed ID: 15281827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects.
    Wasileski SA; Janik MJ
    Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.
    Wilhelm F; Schmickler W; Spohr E
    J Phys Condens Matter; 2010 May; 22(17):175001. PubMed ID: 21393659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions.
    Cai Y; Anderson AB
    J Phys Chem B; 2005 Apr; 109(15):7557-63. PubMed ID: 16851868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the water/platinum interface--a first principles simulation under bias potential.
    Otani M; Hamada I; Sugino O; Morikawa Y; Okamoto Y; Ikeshoji T
    Phys Chem Chem Phys; 2008 Jul; 10(25):3609-12. PubMed ID: 18563221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular dynamics simulations of the oxygen reduction reaction on a Pt(111) surface in the presence of hydrated hydronium (H3O)(+)(H2O)2: direct or series pathway?
    Wang Y; Balbuena PB
    J Phys Chem B; 2005 Aug; 109(31):14896-907. PubMed ID: 16852887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into electrocatalysis.
    Anderson AB
    Phys Chem Chem Phys; 2012 Jan; 14(4):1330-8. PubMed ID: 22159903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanol oxidation on a Pt(111)-OH/O surface.
    Kuzume A; Mochiduki Y; Tsuchida T; Ito M
    Phys Chem Chem Phys; 2008 Apr; 10(16):2175-9. PubMed ID: 18404223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of surface oxide-water interactions on Pt(111) and Pt/PtCo/Pt3Co(111).
    Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2011 Dec; 13(45):20461-70. PubMed ID: 21997769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water formation reaction on Pt(111): role of the proton transfer.
    Nagasaka M; Kondoh H; Ohta T
    J Chem Phys; 2005 May; 122(20):204704. PubMed ID: 15945761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics.
    Cheng H; Selloni A
    Langmuir; 2010 Jul; 26(13):11518-25. PubMed ID: 20481448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO oxidation at the perimeters of an FeO/Pt(111) interface and how water promotes the activity: a first-principles study.
    Gu XK; Ouyang R; Sun D; Su HY; Li WX
    ChemSusChem; 2012 May; 5(5):871-8. PubMed ID: 22162485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first principles molecular dynamics study of excess electron and lithium atom solvation in water-ammonia mixed clusters: structural, spectral, and dynamical behaviors of [(H2O)5NH3]- and Li(H2O)5NH3 at finite temperature.
    Pratihar S; Chandra A
    J Chem Phys; 2011 Jan; 134(3):034302. PubMed ID: 21261348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman studies on the interaction of the reactants with the platinum nanoparticle surface during the nanocatalyzed electron transfer reaction.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Oct; 109(39):18460-4. PubMed ID: 16853377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.