BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 21993528)

  • 1. Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels.
    Brown JC; Chung DJ; Belgrave KR; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2012 Jan; 302(1):R15-28. PubMed ID: 21993528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels.
    Brown JC; Chung DJ; Cooper AN; Staples JF
    J Exp Biol; 2013 May; 216(Pt 9):1736-43. PubMed ID: 23348944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential posttranslational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation.
    Mathers KE; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R262-R269. PubMed ID: 31067076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels?
    Cooper AN; Brown JC; Staples JF
    Comp Biochem Physiol B Biochem Mol Biol; 2014 Apr; 170():50-7. PubMed ID: 24561259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of brain cortex and cardiac muscle mitochondria in hibernating 13-lined ground squirrels Ictidomys tridecemlineatus.
    Gallagher K; Staples JF
    Physiol Biochem Zool; 2013; 86(1):1-8. PubMed ID: 23303316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torpid 13-lined ground squirrel liver mitochondria resist anoxia-reoxygenation despite high levels of protein damage.
    Duffy BM; Hayward L; Staples JF
    J Comp Physiol B; 2023 Dec; 193(6):715-728. PubMed ID: 37851102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes.
    Mathers KE; McFarlane SV; Zhao L; Staples JF
    J Comp Physiol B; 2017 Jan; 187(1):227-234. PubMed ID: 27497598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arousal from Torpor Increases Oxidative Damage in the Hibernating Thirteen-Lined Ground Squirrel (
    Duffy BM; Staples JF
    Physiol Biochem Zool; 2022; 95(3):229-238. PubMed ID: 35443147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels.
    Brown JC; Staples JF
    J Comp Physiol B; 2014 Apr; 184(3):401-14. PubMed ID: 24408585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences.
    Muleme HM; Walpole AC; Staples JF
    Physiol Biochem Zool; 2006; 79(3):474-83. PubMed ID: 16691514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of succinate dehydrogenase and oxaloacetate in metabolic suppression during hibernation and arousal.
    Armstrong C; Staples JF
    J Comp Physiol B; 2010 Jun; 180(5):775-83. PubMed ID: 20112024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects.
    Brown JC; Gerson AR; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2007 Nov; 293(5):R1833-45. PubMed ID: 17804585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels.
    Barger JL; Brand MD; Barnes BM; Boyer BB
    Am J Physiol Regul Integr Comp Physiol; 2003 May; 284(5):R1306-13. PubMed ID: 12676751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the mitochondrial phosphoproteome during mammalian hibernation.
    Chung DJ; Szyszka B; Brown JC; Hüner NP; Staples JF
    Physiol Genomics; 2013 May; 45(10):389-99. PubMed ID: 23572536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator.
    McFarlane SV; Mathers KE; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R434-R442. PubMed ID: 28077390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus.
    James RS; Staples JF; Brown JC; Tessier SN; Storey KB
    J Exp Biol; 2013 Jul; 216(Pt 14):2587-94. PubMed ID: 23531815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient.
    Chung D; Lloyd GP; Thomas RH; Guglielmo CG; Staples JF
    J Comp Physiol B; 2011 Jul; 181(5):699-711. PubMed ID: 21207037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation.
    Martin SL; Maniero GD; Carey C; Hand SC
    Physiol Biochem Zool; 1999; 72(3):255-64. PubMed ID: 10222320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial metabolism in hibernation and daily torpor: a review.
    Staples JF; Brown JC
    J Comp Physiol B; 2008 Sep; 178(7):811-27. PubMed ID: 18551297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels.
    Wu CW; Storey KB
    J Exp Biol; 2012 May; 215(Pt 10):1720-7. PubMed ID: 22539739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.